Разное

Общая формула полисахаридов – Дисахариды ℹ️ общая формула, структура и классификация, химические и физические свойства, примеры восстанавливающих и невосстанавливающих дисахаридов

Содержание

Полисахариды что это такое — общая формула, физические и химические свойства

Полисахариды – это полимерные углеводы, молекулы которых построены из моносахаридных остатков, соединенных гликозидными связями. Это отдельная группа сложных высокомолекулярных углеводов, которые состоят из множества моносахаридов. Основными представителями данного класса являются два компонента – крахмал и целлюлоза. Данные вещества встречаются в природе, они входят в состав растений, овощей, фруктов, также их получают химическим путем в результате проведения многочисленных опытов и исследований. Они используются в разных областях промышленности при производстве разных изделий, вещей, одежды, продуктов и многого другого. Но все же стоит рассмотреть полную характеристику, химическое строение и другие важные особенности.

Химические свойства

Первым делом стоит рассмотреть химические свойства полисахаридов. Данные компоненты относятся к сложным высокомолекулярным углеводам, они являются полигликозидами, или, другими словами, полиацеталями. Моносахариды связываются в молекулу при помощи гликозидных связей с рядом стоящими структурными элементами цепочки. В кислотной среде под влиянием высокотемпературного режима происходит процесс гидролиза. При полном процессе образуются исходные моносахариды (возможно, их производные). При неполном – олигосахариды, включая дисахариды.

Восстановительные свойства у данного класса углеводов достаточно слабые. Они устойчивы к воздействию щелочей. Вещества обладают уникальной способностью, которую применяют для получения сложных эфиров. Среди основных представителей класса полисахаридов можно выделить крахмал, целлюлозу (клетчатку), гликоген. Общая формула полисахаридов, которая применяется для обозначения данных компонентов – (С6Н10О5)n.

Полисахариды

Полисахариды являются распространенной группой веществ, которые имеют природное происхождение. Вырабатываются они растениями и в тканях человека, животных. Это указывает на их активное участие в обменных процессах.

Физические свойства

Полисахариды имеют важные физические свойства, которые стоит внимательно изучить. Большинство компонентов, которые относятся к этому классу, имеют форму порошка, окраска у них белая. Они обладают огромной молекулярной массой, которая может составлять от двух и более миллионов.

Крахмал и целлюлоза имеют вид разветвленных молекул. Они набухают, но не способны растворяться в холодной воде. В отличие от них амилозы (молекулы линейного вида) способны легко растворяться в нейтральной водной среде.

Полисахариды

Функции в организме (таблица)

Что такое полисахариды мы рассмотрели, но теперь стоит выяснить, какое значение углеводы имеют для организма человека. Ниже имеется таблица с основными функциями данных элементов.

Основные функции Примеры полисахаридов Основные качества
Энергетические Крахмал и гликоген Главное назначение данных компонентов состоит в накоплении углеводов, они насыщают организм глюкозой (источником энергии)
Запасающие Гликоген, крахмал Вещества представляют важное значение для организма, благодаря им создаются длительные энергетические запасы, которые накапливаются в структуре жировых тканей. Формирование происходит в клетках мышц и в печени (частично в головном мозге и желудке)
Кофакторные Гепарин и синтетические аналоги Углеводы выполняют функции кофакторов ферментативных соединений в организме. Понижают свертываемость крови
Опорные Целлюлоза, хондроитинсульфат Клетчатка, или целлюлоза, является основой стеблевых образований, а в костных тканях животных содержатся хондроитинсульфаты
Гидроосмотические Кислые гетерополисахариды (гиалуроновая кислота) Они сдерживают в клеточных структурах воду и положительно заряженные ионы, предотвращают накопление молекул жидкости в области межклеточного пространства
Структурные Кислые гетерополисахариды (гиалуроновая кислота) Имеются в составе межклеточного вещества, обладают цементирующими качествами
Защитные Кислые гетерополисахариды, (в том числе мукополисахариды) Они формируют «смазочный» слой на поверхности клеточных структур. Образуются на поверхности органов пищеварения, носовой полости, бронхов, содержатся в суставной жидкости. Защищают ткани от повреждения во время трения, сжатия или внешней вибрации

Классификация по числу и строению моносахаридных остатков

В структуре полиозов от двух до двадцати моносахаридов в двух разных формах – пиранозной или фуранозной.

Ниже имеется таблица со структурными единицами полиозов.

Группа моносахаров Моносахара
Шестиатомные Глюкоза
Галактоза
Пятиатомные Фруктоза
Арабиноза
Ксилоза
Уроновые кислоты Галактуроновая
Глюкуроновая
Маннуроновая

Различаются гомогликаны (они имеют другое название – гомополисахариды), они имеют в составе цепочки идентичные углеводные составляющие. И, соответственно, если звенья углеводов разные, то элемент получает название гетерополисахарида.

Название группы Составляющие
Гомополисахариды (или гомополимеры) Крахмал
Гликоген
Клетчатка
Хитин
Декстран
Гетерополисахариды (или гетерополимеры) Хондроитин-сульфаты
Гепарин
Инулин
Пектины
Камеди
Слизи
Гиалуроновая кислота

Основные представители полисахаридов

Существуют разнообразные вещества, которые относятся к группе полисахаридов. Многие из них присутствуют в природе (в растениях, фруктах, овощах, плодах), имеются в организме человека, также их получают при проведении различных химических опытов.

Крахмал

В составе этого компонента присутствует примерно 20% амилозы и 80% амилопектина. Он относится к основному продукту жизнедеятельности организмов растительного происхождения. Наибольшее количество данного вещества наблюдается в составе зерен злаков, корней/клубней или семян.

Элемент имеет порошкообразный вид с белой окраской. Он имеет мягкую структуру, во время растирания наблюдается характерное поскрипывание. При исследовании крахмала под микроскопом прослеживается зернообразная структура. При помещении в холодную жидкость образуется осадок. При нагревании воды и равномерном помешивании зерна набухают, затем образуется масса с киселеобразной консистенцией.

Основное качество элемента состоит в том, что он способен хорошо гидролизоваться во время нагревания в растворе h3SO4. В результате образуется α-D-глюкоза. Растительные источники крахмала – картофель (до 20%), пшеница. Для выявления крахмала в области химии применяют реакцию с йодом. Обычно образуется сине-фиолетовая окраска раствора или пятно такого же цвета.

Гликоген

Этот компонент является животным аналогом крахмала. Он имеет разветвленную структуру и похож на амилопектин, но гликоген обладает большим количеством звеньев в цепочке (до 12). Масса молекулы гликогена может быть 100 млн у. е.

Во время проведения исследований гликоген извлекают из живых клеток при помощи горячей щелочи NaOH, а осаждение осуществляют спиртовым раствором. После этого он гидролизуется в растворе разбавленной серной кислотой.

Клетчатка (растительная целлюлоза)

Данный представитель полисахаридов обладает высокой прочностью. Именно клетчатка является основным компонентом «скелета» растений. К промышленным источникам (от 50 до 70%) относятся древесина, кукуруза, сено.  В составе молекулы имеется D-глюкопираноза, которая соединена гликозидными связями. Молекулы имеют линейную структуру, масса одной составляет до 2 млн у. е.

Высокая прочность обеспечивается за счет присутствия водородных связей в цепочках, которые могут объединяться в виде пучка. Именно таким образом происходит формирование волокнистости. Элемент инертный, он не растворяется в нейтральных средах, не поддается влиянию ферментов пищеварительных органов. Целлюлоза применяется для многих домашних животных (коров, коней) в качестве питательного элемента.

Гепарин

Он считается аморфным элементом, который имеет порошкообразную структуру и белую окраску. В составе гепарина содержится D‑глюкозамин и D-глюкуроновая кислота, данные компоненты соединены в цепочку за счет  α-гликозидной связи. Масса молекулы гепарина составляет около 20 млн у. е. Кислый гликозаминогликан имеет в основе серу. В научных целях элемент был введен из печени. Относится к антикоагулянтам.

Способен хорошо растворяться в воде, во время нагревания не распадается. Биологическая функция гепарина в организме человека состоит в регулировании свертываемости крови. Этот элемент снижает содержание холестерина, нормализует давление.

Пектины

Это клейкие вещества, которые активно применяются в области кулинарии в качестве кондитерской добавки. Также они имеют другое название – желирующие. Элементы имеются в составе фруктов, растительного сырья. В основном применяется порошок пектина, в редких случаях может использоваться жидкая форма.

В организм человека пектины поступают вместе с продуктами растительного происхождения. Они производят полное очищение всех систем организма, при этом сохраняя бактериальный баланс. А также оказывают омолаживающее воздействие, нормализуют обмен веществ, улучшают состояние гемодинамики. Врачи утверждают, что использование пектиновых лекарственных средств способствует усиленному оздоровлению организма человека. Норма потребления – около 15 граммов в сутки.

Хитин

Хитин – основа скелета насекомых, представителей ракообразных, он содержится в структуре дрожжевых бактерий, разных типов грибов. Это вещество применяется для усиления вкуса и аромата продуктов, еды.

Хитин имеет разнообразные терапевтические качества:

  • предотвращает развитие опухолевых клеточных структур,
  • защищает ткани от радиоактивного воздействия,
  • усиливает воздействие лекарственных препаратов, которые направлены на снижение свертываемости и разжижение крови,
  • повышает иммунную систему,
  • можно использовать в составе профилактической терапии инфарктов, инсультов,
  • усиливает рост бифидобактерий, запускает процесс регенерации.

Области применения полисахаридов

Еще в середине 20 века полисахариды стали широко производить для пищевой промышленности и производства лекарственных средств. Но постепенно их стали использовать в других не менее важных областях.

Использование в области здравоохранения

Зачастую в медицинской практике полисахариды используются в качестве диагностических препаратов при обнаружении кандидозов и сальмонеллезов. Декстраны, которые вырабатываются некоторыми бактериями, являются плазмозаменителями. Сульфат декстрана заменяет гепарин как антикоагулянт. Особой популярностью пользуются препараты, которые имеют в основе хитин. Также хитин применяется при производстве наполнителей и основ различных лекарственных средств. В последнее время стали изготавливаться ферментативные лекарства с пролонгированным действием, которые имеют в составе декстраны. Гликаны являются активным компонентами, которые используются для изготовления высококачественных зубных паст.

Применение в пищевой промышленности

Полисахариды, которые получают из бактерий, применяются для изготовления пищевых пленок. Они предотвращают высыхание продуктов, противостоят попаданию на них грязи, стабилизируют мороженую массу, соки, заправки, сиропы. Ксантин широко используется при изготовлении кисломолочной продукции. Для повышения качества хлебобулочных изделий на производстве добавляются экзополисахариды, они делают хлеб более пышным и мягким. Полисахариды имеют важное значение для биологии в целом. Они принимают участие в важных процессах, оказывают влияние на работу организмов живых существ, способствуют полноценному синтезу питательных веществ в растениях. Кроме этого, данные элементы активно применяются в разных областях промышленности, из них производят пищевые продукты, препараты, химические вещества и растворы, бумагу и другие элементы.

Полисахариды это что такое, примеры и химические свойства полисахаридов

Полисахариды – это высокомолекулярные углеводы, полимеры моносахаридов, или гликаны. Они вырабатываются как растениями, так и животными, могут быть линейными и разветвленными. Условно делятся на 2 категории: полиозы и олигосахариды. Часть гликана вырабатывается в человеческом организме преимущественно в коже для замедления возрастного старения этого органа. Поэтому он активно используется в производстве косметики.

Содержание статьи

Основные функции полисахаридов в организме человека

Функция Полисахариды (примеры) Особенности
ЭНЕРГЕТИЧЕСКАЯ Крахмал и гликоген Накопление углеводов, обеспечение организма энергией.
ЗАПАСАЮЩАЯ Гликоген, крахмал Откладывание углеводов про запас, находится преимущественно в жировой ткани, формируется в клетках мышц, печени и желудка, отчасти в головном мозге.
КОФАКТОРНАЯ Гепарин и синтетические аналоги Являются кофакторами ферментативных соединений, отвечают за снижение свертываемости крови.
ОПОРНАЯ Целлюлоза, хондроитинсульфат Целлюлоза является стеблеобразующей тканью растений, а хондроитинсульфаты выполняют ту же функцию в костной ткани живых организмов.
ГИДРООСМОТИЧЕСКАЯ Кислые гетерополисахариды Способствуют сохранению влаги и ионов с положительным зарядом в клетках.
СТРУКТУРНАЯ Кислые гетерополисахариды Выполняют роль цементирующего состава, дополняют собой межклеточное вещество.
ЗАЩИТНАЯ Кислые гетерополисахариды (в том числе мукополисахариды) Благодаря образованию особого слоя вокруг клеток защищают ткани от различных механических воздействий, внешних вибраций, трения.

Химические свойства полисахаридов

Полисахариды считают полигликозидами и полиацеталями.

Основные химические свойства полисахаридов:

  • Гликозидная связь позволяет моносахаридам образовывать молекулы с другими элементами цепи.
  • Процесс гидролиза запускается в кислотной среде при повышенной температуре. По его завершении формируются изначальные моносахариды или их производные. При неполном процессе формируются олигосахариды и дисахариды.
  • Обновляющие свойства на низком уровне, стойкость к щелочному воздействию.
  • Используются для добычи сложных эфиров.

Перечисленные свойства позволяют использовать полисахариды в различных видах промышленности, при получении новой продукции.

Обратите внимание: Вещества имеют полностью природное возникновение, поэтому получили довольно широкое распространение. Они являются одним из основных участников процессов обмена в организмах.

Физические свойства

В зависимости от разновидности веществ их физические свойства могут отличаться. Большая часть имеет белый цвет, порошкообразную консистенцию, молекулярный вес начинается от 2 млн.

ВидеоВидео

Строение преобладающего большинства – это разветвленные молекулы. Именно эти вещества при контакте с водой увеличиваются в объемах, но не растворяются. Другая группа – линейные молекулы, например амилоза, которые легко растворяются в воде.

Основная классификация полисахаридов

Полисахариды могут разделяться на несколько категорий в зависимости от числа и строения моносахаридов. Их структуру могут составлять минимум 2, максимум 20 моносахаридов.

Структурные единицы полиозов:

Группа моносахаров Моносахара
Шестиатомные Глюкоза, Галактоза, Фруктоза
Пятиатомные Арабиноза, Ксилоза
Уроновые кислоты Галактуроновая, Глюкуроновая, Маннуроновая

Есть еще 2 категории: гомополисахариды, которые состоят из одинаковых углеводных компонентов, гетерополисахариды, в состав которых входят разные звенья углеводов.

Гомополисахариды:

  • крахмал,
  • гликоген,
  • клетчатка,
  • хитин,
  • декстран

Гетерополисахариды:

  • хондроитин-сульфаты,
  • гепарин,
  • инулин,
  • пектины,
  • камеди,
  • слизи,
  • гиалуроновая кислота

Еще одна классификация по форме и виду цепи: разветвленная и линейная.

Существующие виды полисахаридов

Понять, что такое полисахариды, какие функции они выполняют в жизни, можно на примере простых и доступных многим веществ.

ВидеоВидео

Крахмал

Это вещество состоит на 80 % из амилопектина и оставшихся 20 % из амилозы. Добывают его из клубней, зерен, семян, корней. Крахмал – это вещество по типу порошка белого цвета, мягкого и приятного на ощупь, характеризующееся наличием поскрипывания при растирании в руках. При ближайшем рассмотрении можно заметить его зерноподобную структуру, которая при растворении в холодной воде оседает в виде осадков. В теплой воде при монотонном размешивании зерна крахмала увеличиваются в объемах, превращаются в киселеобразный состав.

Это интересно! Хороший гидролиз крахмала обеспечивается при добавлении в h3SO4 и нагревании смеси. В этом случае появляется α-D-глюкоза.

Получают крахмал из картофеля, зерен пшеницы. Строение молекул крахмала спиралеобразное, состоящее из шести моносахаридов. Крахмал, полученный из картофеля, является пищевым продуктом, который нашел широкое применение в кулинарии.

ВидеоВидео

Гликоген

Гликоген – это тот же крахмал, только животного происхождения. Однако у этого аналога структура молекул более разветвленная, имеющая в цепи до 12 звеньев. В биохимии и биологии гликоген именуется «резервным углеводом». Его локализация в клетках живых организмов образует «энергетическое депо». Он добывается из животных клеток при помощи горячего NaOH, затем выпадает в осадок при соединении со спиртом. Гидролиз осуществляется в растворе с серной кислотой.

ВидеоВидео

Клетчатка

Клетчатка по своей сути является целлюлозой растительного происхождения высокой прочности. Наибольшее процентное содержание клетчатки (50–70 %) содержится в сене, древесине, кукурузе.

Это интересно! Волокнистость целлюлозы обеспечивается за счет водородных связей молекул в цепочках, соединяемых в пучок. Они же дают высокую прочность веществу. Целлюлоза является инертным веществом, нерастворимым в нейтральных средах и не взаимодействующим с ферментами пищеварительного тракта.

Некоторым животным, в частности жвачным, целлюлоза необходима как балластный компонент корма. Может участвовать в процессе гидролиза и вступать в реакции для появления сложных эфиров. При взаимодействии с азотной кислотой превращается в сырье, пригодное для добычи целлулоида, разновидностей пороха и твердого топлива для ракет. По большей части древесная целлюлоза используется для производства бумаги.

ВидеоВидео

Гепарин

Гепарин внешне напоминает аморфное вещество порошкового типа белого окраса. Гепарин является антикоагулянтом кислым гликозаминогликаном, содержащим серу. Структура молекул гепарина позволяет ему быть хорошо растворимым в воде веществом, устойчивым к нагреваниям. Выполняет функцию регулятора свертываемости крови, стабилизации уровня холестерина и давления.

В медицине гепарин применяется:

  • в качестве профилактического и терапевтического препарата для людей, склонных к тромбоэмболии;
  • при проведении операций на сердце и сосудах;
  • в лабораториях при сборе анализов крови;
  • при переливании крови в качестве натриевой соли.
ВидеоВидео

Пектины

Пектины – это клейкие компоненты, которые используются в качестве кондитерских добавок в производстве продукции. Еще часто их называют желирующими веществами. Обычно используется в виде порошковой формы, гораздо реже в жидком состоянии. Общая формула полисахаридов пектинов, промышленное обозначение Е440. Добывают пектины из фруктового, свекольного или другого жмыха. Они являются прекрасной добавкой для консервирования, способной увеличить срок хранения закупорки. В организм человека пектины попадают вместе с овощами, фруктами, выполняют функцию нормализации обмена веществ и гемодинамики, омоложения, выравнивания бактериального баланса.

Обратите внимание: Регулярное употребление пектиновых препаратов дает 2 положительных эффекта для человеческого организма – это его оздоровление и сжигание жира. При попадании в организм 25 г пектина из яблок сжигается около 300 г жира ежедневно.

Пектины являются составляющим компонентом в косметологии, используются как загуститель в различных кремах, разглаживающих морщины, средствах, тонизирующих кожу, отбеливающих и защищающих от ультрафиолета.

ВидеоВидео

Хитин

Хитин – это компонент, без которого не продержится скелет ракообразных и насекомых. Также его можно найти в клетках пивных дрожжей и различных грибов. Хитин способен в несколько раз увеличить запах продукта и вкус готового блюда, внешне его преобразовать и улучшить. В кулинарии также используется как консервант, входит в состав пищевых добавок.

Хитин используется в медицине благодаря многообразию терапевтических свойств, таких как:

  • предотвращение распространения опухолевых клеток;
  • защитная функция клеток и тканей от радиации;
  • укрепление и повышение защитных сил организма;
  • профилактическая мера инсультов, инфарктов;
  • увеличение количества бифидобактерий;
  • запуск процессов обновления тканей;
  • усиление действия препаратов, используемых для снижения свертываемости и разжижения крови.
ВидеоВидео

Использование в различных отраслях

Полисахариды в настоящем XXI веке нашли обширное применение в различных отраслях промышленности, в том числе:

  • в пищевой отрасли;
  • в химической, фармацевтической сфере, медицине;
  • на текстильных фабриках;
  • в металлургии;
  • на предприятиях по добыче и переработке газа и нефти.

Медицинская сфера и фармакология

Природные полимеры гликаны отличаются несколькими качествами, среди них:

  • повышение защитных сил организма, стойкости к различным инфекциям;
  • активное противостояние образованию опухолей;
  • ускорение процессов регенерации клеток и тканей, ранозаживления;
  • исключение или минимизация побочных воздействий лекарственных препаратов.
ВидеоВидео

В медицинской сфере находят следующее применение:

  • используются как составляющие вещества специальных препаратов, позволяющих определить в организме человека наличие кандидоза или сальмонеллеза;
  • декстраны, которые вырабатываются определенными бактериями, выступают в медицине плазмозаменителями; сульфат декстрана является альтернативой гепарину как антикоагулянт;
  • хитин используется в качестве основного компонента и наполнителя различных медикаментов;
  • используются как ферментативные средства с длительным действием на основе декстрана с низкой аллергичностью;
  • гликаны входят в состав различных паст высокого качества для чистки зубов.

Пищевая промышленность

Особую популярность полисахариды, добытые из бактерий, обрели в изготовлении прозрачных защитных пленок. Они используются для защиты продуктов питания от высыхания, заражения их бактериями и попадания грязи.

ВидеоВидео

Ксантин становится основным участником процесса производства кисломолочной продукции. Экзополисахариды используются для улучшения качества мучных и хлебобулочных изделий, они позволяют увеличивать их объемы и уменьшать зачерствение.

Промышленность и инновации

Различные примеры полисахаридов можно активно использовать в инновационных и промышленных направлениях:

  • Принимают активное участие вещества в синтезе ядерного топлива.
  • Гликаны, получаемые из определенных видов бактерий, отличаются повышенной степенью вязкости, поэтому часто входят в состав клеящих веществ. Служат прекрасной альтернативой дорогим склеивающим ингредиентам, совершенно не уступая им по качеству.
  • Агаразаменители – это участники синтеза веществ для фотопленок.
  • Часто на нефтегазоперерабатывающих заводах используются такие продукты, как стабилизаторы и жидкость для очистки различных механизмов для бурения скважин. Они производятся на основе молекул гликанов.

Промышленность не стоит на месте, продолжаются научные исследования для поиска, выявления новых качеств, характеристик и свойств молекул моносахаридов с цепи. Они могут быть полезны для развития инновационной отрасли, микробиологической и биологической сферы.

ВидеоВидео

Гидролиз полисахаридов

При химической реакции взаимодействия полисахаридов с водой образуются производные сложные и простые эфиры. Гидролиз полисахаридов – это довольно распространенный процесс, который используется в различных сферах промышленности, таких как:

  • производство этилового спирта;
  • добыча молочной кислоты;
  • образование лимонной и масляной кислот;
  • получение бутанола и других многоатомных спиртов;
  • создание ацетона;
  • выработка крахмала и глюкозы.

При полном гидролизе осуществляется процесс растворения крахмала, находящегося в составе различных культур, на более простые сахара. Аналогичное действие происходит и с целлюлозой. При неполном гидролизе в результате образуются олигосахариды, в том числе и те, которые могут состоять всего из двух моносахаридов.

Полисахариды

Полисахариды

Полисахариды — природные высокомолекулярные несахароподобные углеводы, молекулы которых состоят из большого числа остатков молекул моносахаридов (чаще всего — гексоз).

 

 


Общая формула

6Н10О5)n

(n варьируется от 100 до нескольких тысяч)

Важнейшие представители

Целлюлоза, крахмал, гликоген

Строение целлюлозы

Целлюлоза (клетчатка) — самый распространенный полисахарид. Древесина примерно на 50% состоит из целлюлозы, а хлопок и лен представляют практически чистую целлюлозу.

Макромолекулы целлюлозы состоят из большого числа (от нескольких сотен до 10—14 тыс.) остатков β-глюкозы, связанных (β-1,4-гликозидными связями. Биозный фрагмент целлюлозы:

Структурное звено целлюлозы:

Химические свойства целлюлозы

1. Гидролиз (в кислой среде)

2. Образование сложных зфиров

(Тринитрат целлюлозы — основа бездымного пороха.)

(Триацетат целлюлозы — сырье для изготовления ацетатных волокон )

3. Горение

(C6H10O5)n + 6nO2 → 6nCO2 + 5nH2O

Строение крахмала

Крахмал — растительный полисахарид, состоящий из двух фракций: амилопектина и амилозы.

Макромолекулы амилозы имеют линейное строение и состоят из большого числа остатков α-глюкозы, связанных α-1,4-гликозидными связями. Молекулярная масса амилозы колеблется от 150 тыс. до 500 тыс.

Биозный фрагмент амилозы:

Макромолекулы амилопектина сильно разветвлены и состоят из фрагментов амилозы (около 20 моносахаридных остатков), связанных между собой α- 1,6-гликозидными связями. Молекулярная масса 106-109.

Фрагмент макромолекулы амилопектина:

Химические свойства крахмала

1. Гидролиз (кислотный или ферментативный)

2. Качественная реакция на крахмал

(C6H10O5)n + I2 → Адсорбционный комплекс амилозы с йодом синего цвета.

Гликоген

Это животный полисахарид, имеющий сходное строение с амилопектином, но отличающийся от него большей разветвленностью цепей, а также большей молекулярной массой.

Превращения крахмала в организме человека и животных

Полисахариды — Википедия

Полисахариды — высокомолекулярные углеводы, полимеры моносахаридов (гликаны). Молекулы полисахаридов представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды. У живых организмов выполняют резервные (крахмал, гликоген), структурные (целлюлоза, хитин) и другие функции.

Свойства полисахаридов значительно отличаются от свойств их мономеров и зависят не только от состава, но и от строения (в частности, разветвлённости) молекул. Они могут быть аморфными или даже нерастворимыми в воде.[1][2] Если полисахарид состоит из одинаковых моносахаридных остатков, он называется гомополисахаридом или гомогликаном, а если из разных — гетерополисахаридом или гетерогликаном.[3][4]

Природные сахариды чаще всего состоят из моносахаридов с формулой (CH2O)n, где n ≥3 (например, глюкоза, фруктоза и глицеральдегид)[5]. Общая формула большинства полисахаридов — Cx(H2O)y, где x обычно лежит между 200 и 2500. Чаще всего мономерами являются шестиуглеродные моносахариды, и в таком случае формула полисахарида выглядит как (C6H10O5)n, где 40≤n≤3000.

Полисахаридами обычно называют полимеры, содержащие больше десяти моносахаридных остатков. Резкой границы между полисахаридами и олигосахаридами нет. Полисахариды являются важной подгруппой биополимеров. Их функция в живых организмах обычно либо структурная, либо резервная. Запасным веществом высших растений обычно служит крахмал, состоящий из амилозы и амилопектина (полимеров глюкозы). У животных есть похожий, но более плотный и разветвленный полимер глюкозы — гликоген, или «животный крахмал». Он может быть использован быстрее, что связано с активным метаболизмом животных.

Целлюлоза и хитин — это структурные полисахариды. Целлюлоза служит структурной основой клеточной стенки растений, это наиболее распространенное органическое вещество на Земле.[6] Она используется при производстве бумаги и тканей, и в качестве исходного сырья для производства вискозы, ацетилцеллюлозы, целлулоида и нитроцеллюлозы. Хитин имеет такую же структуру, но с азотсодержащим боковым ответвлением, увеличивающим его прочность. Он есть в экзоскелетах членистоногих и в клеточных стенках некоторых грибов. Он также используется во многих производствах, включая хирургические иглы. Полисахариды также включают каллозу, ламинарин, хризоламинарин, ксилан, арабиноксилан, маннан, фукоидан и галактоманнаны.

Функции

Функция Характеристика
Энергетическая Основной источник энергии. Расщепляются до моносахаридов с последующим окислением до СО2 и Н2О. При расщеплении 1 г углеводов выделяется 17,6 кДж энергии.
Структурная Входят в состав оболочек клеток и некоторых органелл. У растений полисахариды выполняют опорную функцию.
Запасающая Накапливаются в тканях растений (крахмал) и животных (гликоген). Используются при возникновении потребности в энергии.
Защитная Секреты, выделяющиеся разными железами, обогащены углеводами, например глюкопротеидами, защищающими стенки полых органов (пищевод, желудок, бронхи) от механических повреждений, проникновения вредных бактерий и вирусов.

Свойства

Пищевые полисахариды — основные источники энергии. Многие микроорганизмы легко разлагают до глюкозы крахмал, но большинство микроорганизмов не могут переварить целлюлозу или другие полисахариды, такие как хитин и арабиноксиланы. Эти углеводы могут усваиваться некоторыми бактериями и протистами. Жвачные животные и термиты, к примеру, используют микроорганизмы для переваривания целлюлозы.

Даже при том, что эти сложные углеводы не очень легко усвояемы, они важны для питания. Их называют пищевыми волокнами, эти углеводы улучшают пищеварение среди прочей пользы. Основная функция пищевых волокон — это изменение природного содержимого желудочно-кишечного тракта, и изменение всасывания других нутриентов и химических веществ.[7][8] Растворимые волокна связываются с жёлчными кислотами в тонком кишечнике, растворяя их для лучшего усвоения; это в свою очередь понижает уровень холестерина в крови.[9] Растворимые волокна также замедляют всасывание сахара и уменьшают ответную реакцию на него после еды, нормализуют уровень содержания липидов в крови, и после ферментации в толстой кишке синтезируются в короткоцепочные жирные кислоты в качестве побочных продуктов с широким спектром физиологической активности (пояснение ниже). Хотя нерастворимые волокна и уменьшают риск диабета, механизм их действия до сих пор не изучен.[10]

Пищевые волокна считаются важными составляющими питания, и во многих развитых странах рекомендуется увеличивать их потребление.[7][8][11][12]

Видео по теме

Резервные полисахариды

Крахмал

Крахмалы — это полимеры глюкозы, в которых остатки глюкопиранозы образуют альфа-соединения. Они сделаны из смеси амилозы (15–20 %) и амилопектина (80–85 %). Амилоза состоит из линейной цепочки нескольких сотен глюкозных молекул, а амилопектин — это разветвленная молекула, сделанная из нескольких тысяч глюкозных остатков (каждая цепочка из 24–30 глюкозных остатков — это одна единица амилопектина). Крахмалы нерастворимы в воде. Они могут перевариться при разрыве альфа-соединений (гликозидные соединения). И у животных, и людей есть амилазы, поэтому они могут переварить крахмал. Картофель, рис, мука и кукуруза — главные источники крахмала в человеческом питании. Растения запасают глюкозу в виде крахмалов.

Гликоген

Гликоген служит вторым по значению долговременным энергетическим запасом в клетках животных и грибов, который откладывается в виде энергии в жировой ткани. Гликоген в первую очередь образовывается в печени и мышцах, но также может вырабатываться гликогеногенезом в головном мозге и желудке.[13]

Гликоген — это аналог крахмала, глюкозный полимер в растениях, иногда его называют «животный крахмал»,[14] имеет схожую структуру с амилопектином, но больше разветвлен и компактен, чем крахмал. Гликоген — это полимер, связанный гликозидными связями α(1→4) (в точках разветвления — α(1→6)). Гликоген находится в форме гранул в цитозоли/цитоплазме многих клеток и играет важную роль в глюкозном цикле. Гликоген формирует запас энергии, которая быстро пускается в обращение при необходимости в глюкозе, но он менее плотный и быстрее доступен в качестве энергии, чем триглицериды (липиды).

В гепатоцитах вскоре после еды гликоген может составлять до 8 процентов массы (у взрослых — 100—120 г).[15] Только гликоген, запасенный в печени, может быть доступен для других органов. В мышцах гликоген составляет 1-2 % массы. Количество гликогена, отложенного в теле — в особенности в мышцах, печени и эритроцитах[16][17][18] — зависит от физической активности, основного обмена и пищевых привычек, таких как периодическое голодание. Небольшое количество гликогена находится в почках, и ещё меньше в клетках глии в головном мозге и лейкоцитах. В матке также запасается гликоген во время беременности, чтобы рос эмбрион.[15]

Гликоген состоит из разветвленной цепочки глюкозных остатков. Он находится в печени и мышцах.

  • Это энергетический запас для животных.
  • Это основная форма углевода, отложенного в теле животного.
  • Он нерастворим в воде. Йодом окрашивается в красный цвет.
  • Он превращается в глюкозу в процессе гидролиза.
  • Схема гликогена в двумерном сечении. В сердцевине находится белок гликогенин, окруженный ответвлениями глюкозных остатков. Во всей глобулярной грануле может содержаться примерно 30 000 глюкозных остатков.[19]

Структурные полисахариды

Арабиноксиланы

Арабиноксиланы находятся и в главных, и во второстепенных стенках клеток растений, и они являются сополимерами двух пентозных сахаров: арабиноза и ксилоза.

Целлюлоза

Строительный материал растений формируется в первую очередь из целлюлозы. Дерево содержит, кроме целлюлозы, много лигнина, а бумага и хлопок — это почти чистая целлюлоза. Целлюлоза — это полимер, сделанный из повторяющихся глюкозных остатков, соединенных вместе бета-связями. У людей и многих животных нет энзимов разорвать бета-связи, поэтому они не переваривают целлюлозу. Определенные животные, такие как термиты, могут переварить целлюлозу, потому что в их пищеварительной системе присутствуют энзимы, способные переварить её. Целлюлоза нерастворима в воде. Не меняет цвет при смешивании с йодом. При гидролизе переходит в глюкозу. Это самый распространенный углевод в мире.

Хитин

Хитин — один из самых часто встречающихся натуральных полимеров. Он является строительным компонентом многих животных, к примеру экзоскелетов. Он разлагается микроорганизмами в течение долгого времени в окружающей среде. Его распад могут катализировать ферменты под названием хитиназы, которые секретируют такие микроорганизмы как бактерии и грибы, и производят некоторые растения. У некоторых из этих микроорганизмов есть рецепторы, которые расщепляют хитин до простого сахара. При нахождении хитина они начинают выделять ферменты, расщепляющие его до гликозидных связей, чтобы получить простые сахара и аммиак.

Химически хитин очень близок хитозану (более водорастворимое производное хитина). Он также очень похож на целлюлозу: это тоже длинная неразветвленная цепочка глюкозных остатков, но с добавочными группами. Оба материала придают организмам прочность.

Пектины

Пектины — это совокупность полисахаридов, которые состоят из а-1,4-связей между остатками D-галактопиранозилуроновой кислоты. Они есть во многих важнейших клеточных стенках и в недревесных частях растений.

Кислотные полисахариды

Кислотные полисахариды — это полисахариды, содержащие карбоксильные группы, фосфатные группы и/или группы серных сложных эфиров.

Бактериальные капсульные полисахариды

Патогенные бактерии обычно вырабатывают вязкий, слизистый слой полисахаридов. Эта «капсула» скрывает антигеновые белки на поверхности бактерии, которая иначе вызвала бы иммунный ответ и таким образом привела к разрушению бактерии. Капсульные полисахариды водорастворимые, зачастую кислотные, и у них есть молекулярная масса на уровне 100—2000 kDa. Они линейны и состоят из постоянно повторяющихся субъединиц от одного до шести моносахаридов. Существует огромное структурное многообразие; около двух сотен разных полисахаридов производится только одной кишечной палочкой. Смесь капсульных полисахаридов, либо конъюгируется, либо естественным путем используется как вакцина.

Бактерии и многие другие микробы, включая грибы и водоросли, часто секретируют полисахариды, чтобы прилипнуть к поверхностям для предотвращения пересыхания. Люди научились превращать некоторые такие полисахариды в полезные продукты, включая ксантановую камедь, декстран, гуаровая камедь, велановую камедь, дьютановую камедь и пуллулан.

Большинство из этих полисахаридов выделяют полезные вязкоупругие свойства, когда растворяются в воде на очень низком уровне.[20] Это позволяет использовать различные жидкости в ежедневной жизни, к примеру, в таких продуктах как лосьоны, очищающие средства и краски, вязкие в стабильном состоянии, но становятся намного более жидкие при малейшем движении и используются для размешивания или взбалтывания, чтобы наливать, вытирать или расчесывать. Это свойство называется псевдопластичностью; изучение таких материалов называется реология.

У водного раствора таких полисахаридов есть интересное свойство: если придать ему круговое движение, раствор сначала продолжает кружить по инерции, замедляя движение благодаря вязкости, а потом меняет направление, после чего останавливается. Этот разворот происходит благодаря упругости цепочек полисахаридов, которые после растяжения стремятся возвратиться в расслабленное состояние.

Мембранные полисахариды выполняют другие роли в бактериальной экологии и физиологии. Они служат барьером между клеточной стенкой и окружающим миром, посредником во взаимодействии хозяин-паразит, и образуют строительные компоненты биопленки. Эти полисахариды синтезируются из нуклеотидно-активированных предшественников (их называют нуклеотидные сахара) и, во многих случаях, все ферменты, необходимые для биосинтеза, собрания и транспортировки целого полимера закодированые генами, организованны в специальных группах с геномом организма. Липополисахарид — это один из самых важных мембранных полисахаридов, так как он играет ключевую структурную роль для сохранения целостности клетки, а также является важнейшим посредником во взаимодействии между хозяином и паразитом.

Недавно были найдены энзимы, которые образуют A-группу (гомополимерные) и B-группу (гетерополимерные) O-антигенов и определены их метаболические пути.[21] Экзополисахаридный альгинат — это линейный полисахарид, связанный β-1,4-остатками D-маннуроновой и L-гулуроновой кислот, и ответственный за мукоидный фенотип последней стадии муковисцедоза. Локусы Pel и psl — две недавно обнаруженные генетические группы, которые также закодированы экзополисахаридами, и как выяснилось, являются очень важным составляющим биопленки. Рамнолипиды — это биологические поверхностно-активные вещества, производство которых строго регулируется на транскрипционном уровне, но роль, которую они играют во время болезни, пока не изучена. Протеиновое гликозилирование, в частности пилин и флагеллин, стали объектом исследования нескольких групп начиная где-то с 2007 г., и как оказалось, они очень важны для адгезии и инвазии во время бактериальной инфекции.[22]

Примечания

  1. Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M. Essentials of glycobiology. — Cold Spring Harbor Laboratory Press; 2nd edition, 2008. — ISBN 0-87969-770-9.
  2. Varki A, Cummings R, Esko J, Jessica Freeze, Hart G, Marth J. Essentials of glycobiology. — Cold Spring Harbor Laboratory Press, 1999. — ISBN 0-87969-560-9.
  3. ↑ IUPAC Gold Book internet edition: «homopolysaccharide (homoglycan)».
  4. ↑ IUPAC Gold Book internet edition: «heteropolysaccharide (heteroglycan)».
  5. ↑ Matthews, C. E.; K. E. Van Holde; K. G. Ahern (1999) Biochemistry. 3rd edition. Benjamin Cummings. ISBN 0-8053-3066-6
  6. ↑ N.A.Campbell (1996) Biology (4th edition). Benjamin Cummings NY. p.23 ISBN 0-8053-1957-3
  7. 1 2 Dietary Reference Intakes for Energy, Carbohydrate, fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) (2005), Chapter 7: Dietary, Functional and Total fiber. (недоступная ссылка — история). US Department of Agriculture, National Agricultural Library and National Academy of Sciences, Institute of Medicine, Food and Nutrition Board. Архивировано 27 октября 2011 года.
  8. 1 2 Eastwood M, Kritchevsky D (2005). «Dietary fiber: how did we get where we are?». Annu Rev Nutr 25: 1–8. DOI:10.1146/annurev.nutr.25.121304.131658. PMID 16011456.
  9. Anderson JW (2009). «Health benefits of dietary fiber». Nutr Rev 67 (4): 188–205. DOI:10.1111/j.1753-4887.2009.00189.x. PMID 19335713.
  10. Weickert MO, Pfeiffer AF (2008). «Metabolic effects of dietary fiberand any other substance that consume and prevention of diabetes». J Nutr 138 (3): 439–42. PMID 18287346.
  11. ↑ Dietary Benefits of Fucoidan from Sulfated Polysaccharides.
  12. Jones PJ, Varady KA (2008). «Are functional foods redefining nutritional requirements?» (PDF). Appl Physiol Nutr Metab 33 (1): 118–23. DOI:10.1139/H07-134. PMID 18347661.
  13. ↑ Anatomy and Physiology. Saladin, Kenneth S. McGraw-Hill, 2007.
  14. ↑ Animal starch. Merriam Webster. Проверено 11 мая 2014.
  15. 1 2 Campbell, Neil A. Biology: Exploring Life. — Boston, Massachusetts : Pearson Prentice Hall, 2006. — ISBN 0-13-250882-6.
  16. Moses SW, Bashan N, Gutman A (December 1972). «Glycogen metabolism in the normal red blood cell». Blood 40 (6): 836–43. PMID 5083874.
  17. ↑ http://jeb.biologists.org/cgi/reprint/129/1/141.pdf
  18. Miwa I, Suzuki S (November 2002). «An improved quantitative assay of glycogen in erythrocytes». Annals of Clinical Biochemistry 39 (Pt 6): 612–3. DOI:10.1258/000456302760413432. PMID 12564847.
  19. ↑ Page 12 in: Exercise physiology: energy, nutrition, and human performance, By William D. McArdle, Frank I. Katch, Victor L. Katch, Edition: 6, illustrated, Published by Lippincott Williams & Wilkins, 2006, ISBN 0-7817-4990-5, ISBN 978-0-7817-4990-9, 1068 pages
  20. ↑ Viscosity of Welan Gum vs. Concentration in Water. Архивированная копия (недоступная ссылка — история). Проверено 2 октября 2009. Архивировано 18 июля 2011 года.
  21. Guo H, Yi W, Song JK, Wang PG (2008). «Current understanding on biosynthesis of microbial polysaccharides». Curr Top Med Chem 8 (2): 141–51. DOI:10.2174/156802608783378873. PMID 18289083.
  22. Cornelis P (editor). Pseudomonas: Genomics and Molecular Biology. — 1st. — Caister Academic Press, 2008. — ISBN [1].

См. также

⛭
Общие:
Геометрия
Моносахариды
Диозы
Триозы
Тетрозы
Пентозы
ГексозаКетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)
Гептозы
>7
Мультисахариды
Производные углеводов

Полисахариды — Википедия

Полисахариды — высокомолекулярные углеводы, полимеры моносахаридов (гликаны). Молекулы полисахаридов представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды. У живых организмов выполняют резервные (крахмал, гликоген), структурные (целлюлоза, хитин) и другие функции.

Свойства полисахаридов значительно отличаются от свойств их мономеров и зависят не только от состава, но и от строения (в частности, разветвлённости) молекул. Они могут быть аморфными или даже нерастворимыми в воде.[1][2] Если полисахарид состоит из одинаковых моносахаридных остатков, он называется гомополисахаридом или гомогликаном, а если из разных — гетерополисахаридом или гетерогликаном.[3][4]

Природные сахариды чаще всего состоят из моносахаридов с формулой (CH2O)n, где n ≥3 (например, глюкоза, фруктоза и глицеральдегид)[5]. Общая формула большинства полисахаридов — Cx(H2O)y, где x обычно лежит между 200 и 2500. Чаще всего мономерами являются шестиуглеродные моносахариды, и в таком случае формула полисахарида выглядит как (C6H10O5)n, где 40≤n≤3000.

Полисахаридами обычно называют полимеры, содержащие больше десяти моносахаридных остатков. Резкой границы между полисахаридами и олигосахаридами нет. Полисахариды являются важной подгруппой биополимеров. Их функция в живых организмах обычно либо структурная, либо резервная. Запасным веществом высших растений обычно служит крахмал, состоящий из амилозы и амилопектина (полимеров глюкозы). У животных есть похожий, но более плотный и разветвленный полимер глюкозы — гликоген, или «животный крахмал». Он может быть использован быстрее, что связано с активным метаболизмом животных.

Целлюлоза и хитин — это структурные полисахариды. Целлюлоза служит структурной основой клеточной стенки растений, это наиболее распространенное органическое вещество на Земле.[6] Она используется при производстве бумаги и тканей, и в качестве исходного сырья для производства вискозы, ацетилцеллюлозы, целлулоида и нитроцеллюлозы. Хитин имеет такую же структуру, но с азотсодержащим боковым ответвлением, увеличивающим его прочность. Он есть в экзоскелетах членистоногих и в клеточных стенках некоторых грибов. Он также используется во многих производствах, включая хирургические иглы. Полисахариды также включают каллозу, ламинарин, хризоламинарин, ксилан, арабиноксилан, маннан, фукоидан и галактоманнаны.

Функции

Функция Характеристика
Энергетическая Основной источник энергии. Расщепляются до моносахаридов с последующим окислением до СО2 и Н2О. При расщеплении 1 г углеводов выделяется 17,6 кДж энергии.
Структурная Входят в состав оболочек клеток и некоторых органелл. У растений полисахариды выполняют опорную функцию.
Запасающая Накапливаются в тканях растений (крахмал) и животных (гликоген). Используются при возникновении потребности в энергии.
Защитная Секреты, выделяющиеся разными железами, обогащены углеводами, например глюкопротеидами, защищающими стенки полых органов (пищевод, желудок, бронхи) от механических повреждений, проникновения вредных бактерий и вирусов.

Свойства

Пищевые полисахариды — основные источники энергии. Многие микроорганизмы легко разлагают до глюкозы крахмал, но большинство микроорганизмов не могут переварить целлюлозу или другие полисахариды, такие как хитин и арабиноксиланы. Эти углеводы могут усваиваться некоторыми бактериями и протистами. Жвачные животные и термиты, к примеру, используют микроорганизмы для переваривания целлюлозы.

Даже при том, что эти сложные углеводы не очень легко усвояемы, они важны для питания. Их называют пищевыми волокнами, эти углеводы улучшают пищеварение среди прочей пользы. Основная функция пищевых волокон — это изменение природного содержимого желудочно-кишечного тракта, и изменение всасывания других нутриентов и химических веществ.[7][8] Растворимые волокна связываются с жёлчными кислотами в тонком кишечнике, растворяя их для лучшего усвоения; это в свою очередь понижает уровень холестерина в крови.[9] Растворимые волокна также замедляют всасывание сахара и уменьшают ответную реакцию на него после еды, нормализуют уровень содержания липидов в крови, и после ферментации в толстой кишке синтезируются в короткоцепочные жирные кислоты в качестве побочных продуктов с широким спектром физиологической активности (пояснение ниже). Хотя нерастворимые волокна и уменьшают риск диабета, механизм их действия до сих пор не изучен.[10]

Пищевые волокна считаются важными составляющими питания, и во многих развитых странах рекомендуется увеличивать их потребление.[7][8][11][12]

Резервные полисахариды

Крахмал

Крахмалы — это полимеры глюкозы, в которых остатки глюкопиранозы образуют альфа-соединения. Они сделаны из смеси амилозы (15–20 %) и амилопектина (80–85 %). Амилоза состоит из линейной цепочки нескольких сотен глюкозных молекул, а амилопектин — это разветвленная молекула, сделанная из нескольких тысяч глюкозных остатков (каждая цепочка из 24–30 глюкозных остатков — это одна единица амилопектина). Крахмалы нерастворимы в воде. Они могут перевариться при разрыве альфа-соединений (гликозидные соединения). И у животных, и людей есть амилазы, поэтому они могут переварить крахмал. Картофель, рис, мука и кукуруза — главные источники крахмала в человеческом питании. Растения запасают глюкозу в виде крахмалов.

Гликоген

Гликоген служит вторым по значению долговременным энергетическим запасом в клетках животных и грибов, который откладывается в виде энергии в жировой ткани. Гликоген в первую очередь образовывается в печени и мышцах, но также может вырабатываться гликогеногенезом в головном мозге и желудке.[13]

Гликоген — это аналог крахмала, глюкозный полимер в растениях, иногда его называют «животный крахмал»,[14] имеет схожую структуру с амилопектином, но больше разветвлен и компактен, чем крахмал. Гликоген — это полимер, связанный гликозидными связями α(1→4) (в точках разветвления — α(1→6)). Гликоген находится в форме гранул в цитозоли/цитоплазме многих клеток и играет важную роль в глюкозном цикле. Гликоген формирует запас энергии, которая быстро пускается в обращение при необходимости в глюкозе, но он менее плотный и быстрее доступен в качестве энергии, чем триглицериды (липиды).

В гепатоцитах вскоре после еды гликоген может составлять до 8 процентов массы (у взрослых — 100—120 г).[15] Только гликоген, запасенный в печени, может быть доступен для других органов. В мышцах гликоген составляет 1-2 % массы. Количество гликогена, отложенного в теле — в особенности в мышцах, печени и эритроцитах[16][17][18] — зависит от физической активности, основного обмена и пищевых привычек, таких как периодическое голодание. Небольшое количество гликогена находится в почках, и ещё меньше в клетках глии в головном мозге и лейкоцитах. В матке также запасается гликоген во время беременности, чтобы рос эмбрион.[15]

Гликоген состоит из разветвленной цепочки глюкозных остатков. Он находится в печени и мышцах.

  • Это энергетический запас для животных.
  • Это основная форма углевода, отложенного в теле животного.
  • Он нерастворим в воде. Йодом окрашивается в красный цвет.
  • Он превращается в глюкозу в процессе гидролиза.
  • Схема гликогена в двумерном сечении. В сердцевине находится белок гликогенин, окруженный ответвлениями глюкозных остатков. Во всей глобулярной грануле может содержаться примерно 30 000 глюкозных остатков.[19]

Структурные полисахариды

Арабиноксиланы

Арабиноксиланы находятся и в главных, и во второстепенных стенках клеток растений, и они являются сополимерами двух пентозных сахаров: арабиноза и ксилоза.

Целлюлоза

Строительный материал растений формируется в первую очередь из целлюлозы. Дерево содержит, кроме целлюлозы, много лигнина, а бумага и хлопок — это почти чистая целлюлоза. Целлюлоза — это полимер, сделанный из повторяющихся глюкозных остатков, соединенных вместе бета-связями. У людей и многих животных нет энзимов разорвать бета-связи, поэтому они не переваривают целлюлозу. Определенные животные, такие как термиты, могут переварить целлюлозу, потому что в их пищеварительной системе присутствуют энзимы, способные переварить её. Целлюлоза нерастворима в воде. Не меняет цвет при смешивании с йодом. При гидролизе переходит в глюкозу. Это самый распространенный углевод в мире.

Хитин

Хитин — один из самых часто встречающихся натуральных полимеров. Он является строительным компонентом многих животных, к примеру экзоскелетов. Он разлагается микроорганизмами в течение долгого времени в окружающей среде. Его распад могут катализировать ферменты под названием хитиназы, которые секретируют такие микроорганизмы как бактерии и грибы, и производят некоторые растения. У некоторых из этих микроорганизмов есть рецепторы, которые расщепляют хитин до простого сахара. При нахождении хитина они начинают выделять ферменты, расщепляющие его до гликозидных связей, чтобы получить простые сахара и аммиак.

Химически хитин очень близок хитозану (более водорастворимое производное хитина). Он также очень похож на целлюлозу: это тоже длинная неразветвленная цепочка глюкозных остатков, но с добавочными группами. Оба материала придают организмам прочность.

Пектины

Пектины — это совокупность полисахаридов, которые состоят из а-1,4-связей между остатками D-галактопиранозилуроновой кислоты. Они есть во многих важнейших клеточных стенках и в недревесных частях растений.

Кислотные полисахариды

Кислотные полисахариды — это полисахариды, содержащие карбоксильные группы, фосфатные группы и/или группы серных сложных эфиров.

Бактериальные капсульные полисахариды

Патогенные бактерии обычно вырабатывают вязкий, слизистый слой полисахаридов. Эта «капсула» скрывает антигеновые белки на поверхности бактерии, которая иначе вызвала бы иммунный ответ и таким образом привела к разрушению бактерии. Капсульные полисахариды водорастворимые, зачастую кислотные, и у них есть молекулярная масса на уровне 100—2000 kDa. Они линейны и состоят из постоянно повторяющихся субъединиц от одного до шести моносахаридов. Существует огромное структурное многообразие; около двух сотен разных полисахаридов производится только одной кишечной палочкой. Смесь капсульных полисахаридов, либо конъюгируется, либо естественным путем используется как вакцина.

Бактерии и многие другие микробы, включая грибы и водоросли, часто секретируют полисахариды, чтобы прилипнуть к поверхностям для предотвращения пересыхания. Люди научились превращать некоторые такие полисахариды в полезные продукты, включая ксантановую камедь, декстран, гуаровая камедь, велановую камедь, дьютановую камедь и пуллулан.

Большинство из этих полисахаридов выделяют полезные вязкоупругие свойства, когда растворяются в воде на очень низком уровне.[20] Это позволяет использовать различные жидкости в ежедневной жизни, к примеру, в таких продуктах как лосьоны, очищающие средства и краски, вязкие в стабильном состоянии, но становятся намного более жидкие при малейшем движении и используются для размешивания или взбалтывания, чтобы наливать, вытирать или расчесывать. Это свойство называется псевдопластичностью; изучение таких материалов называется реология.

У водного раствора таких полисахаридов есть интересное свойство: если придать ему круговое движение, раствор сначала продолжает кружить по инерции, замедляя движение благодаря вязкости, а потом меняет направление, после чего останавливается. Этот разворот происходит благодаря упругости цепочек полисахаридов, которые после растяжения стремятся возвратиться в расслабленное состояние.

Мембранные полисахариды выполняют другие роли в бактериальной экологии и физиологии. Они служат барьером между клеточной стенкой и окружающим миром, посредником во взаимодействии хозяин-паразит, и образуют строительные компоненты биопленки. Эти полисахариды синтезируются из нуклеотидно-активированных предшественников (их называют нуклеотидные сахара) и, во многих случаях, все ферменты, необходимые для биосинтеза, собрания и транспортировки целого полимера закодированые генами, организованны в специальных группах с геномом организма. Липополисахарид — это один из самых важных мембранных полисахаридов, так как он играет ключевую структурную роль для сохранения целостности клетки, а также является важнейшим посредником во взаимодействии между хозяином и паразитом.

Недавно были найдены энзимы, которые образуют A-группу (гомополимерные) и B-группу (гетерополимерные) O-антигенов и определены их метаболические пути.[21] Экзополисахаридный альгинат — это линейный полисахарид, связанный β-1,4-остатками D-маннуроновой и L-гулуроновой кислот, и ответственный за мукоидный фенотип последней стадии муковисцедоза. Локусы Pel и psl — две недавно обнаруженные генетические группы, которые также закодированы экзополисахаридами, и как выяснилось, являются очень важным составляющим биопленки. Рамнолипиды — это биологические поверхностно-активные вещества, производство которых строго регулируется на транскрипционном уровне, но роль, которую они играют во время болезни, пока не изучена. Протеиновое гликозилирование, в частности пилин и флагеллин, стали объектом исследования нескольких групп начиная где-то с 2007 г., и как оказалось, они очень важны для адгезии и инвазии во время бактериальной инфекции.[22]

Примечания

  1. Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M. Essentials of glycobiology. — Cold Spring Harbor Laboratory Press; 2nd edition, 2008. — ISBN 0-87969-770-9.
  2. Varki A, Cummings R, Esko J, Jessica Freeze, Hart G, Marth J. Essentials of glycobiology. — Cold Spring Harbor Laboratory Press, 1999. — ISBN 0-87969-560-9.
  3. ↑ IUPAC Gold Book internet edition: «homopolysaccharide (homoglycan)».
  4. ↑ IUPAC Gold Book internet edition: «heteropolysaccharide (heteroglycan)».
  5. ↑ Matthews, C. E.; K. E. Van Holde; K. G. Ahern (1999) Biochemistry. 3rd edition. Benjamin Cummings. ISBN 0-8053-3066-6
  6. ↑ N.A.Campbell (1996) Biology (4th edition). Benjamin Cummings NY. p.23 ISBN 0-8053-1957-3
  7. 1 2 Dietary Reference Intakes for Energy, Carbohydrate, fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) (2005), Chapter 7: Dietary, Functional and Total fiber. (недоступная ссылка — история). US Department of Agriculture, National Agricultural Library and National Academy of Sciences, Institute of Medicine, Food and Nutrition Board. Архивировано 27 октября 2011 года.
  8. 1 2 Eastwood M, Kritchevsky D (2005). «Dietary fiber: how did we get where we are?». Annu Rev Nutr 25: 1–8. DOI:10.1146/annurev.nutr.25.121304.131658. PMID 16011456.
  9. Anderson JW (2009). «Health benefits of dietary fiber». Nutr Rev 67 (4): 188–205. DOI:10.1111/j.1753-4887.2009.00189.x. PMID 19335713.
  10. Weickert MO, Pfeiffer AF (2008). «Metabolic effects of dietary fiberand any other substance that consume and prevention of diabetes». J Nutr 138 (3): 439–42. PMID 18287346.
  11. ↑ Dietary Benefits of Fucoidan from Sulfated Polysaccharides.
  12. Jones PJ, Varady KA (2008). «Are functional foods redefining nutritional requirements?» (PDF). Appl Physiol Nutr Metab 33 (1): 118–23. DOI:10.1139/H07-134. PMID 18347661.
  13. ↑ Anatomy and Physiology. Saladin, Kenneth S. McGraw-Hill, 2007.
  14. ↑ Animal starch. Merriam Webster. Проверено 11 мая 2014.
  15. 1 2 Campbell, Neil A. Biology: Exploring Life. — Boston, Massachusetts : Pearson Prentice Hall, 2006. — ISBN 0-13-250882-6.
  16. Moses SW, Bashan N, Gutman A (December 1972). «Glycogen metabolism in the normal red blood cell». Blood 40 (6): 836–43. PMID 5083874.
  17. ↑ http://jeb.biologists.org/cgi/reprint/129/1/141.pdf
  18. Miwa I, Suzuki S (November 2002). «An improved quantitative assay of glycogen in erythrocytes». Annals of Clinical Biochemistry 39 (Pt 6): 612–3. DOI:10.1258/000456302760413432. PMID 12564847.
  19. ↑ Page 12 in: Exercise physiology: energy, nutrition, and human performance, By William D. McArdle, Frank I. Katch, Victor L. Katch, Edition: 6, illustrated, Published by Lippincott Williams & Wilkins, 2006, ISBN 0-7817-4990-5, ISBN 978-0-7817-4990-9, 1068 pages
  20. ↑ Viscosity of Welan Gum vs. Concentration in Water. Архивированная копия (недоступная ссылка — история). Проверено 2 октября 2009. Архивировано 18 июля 2011 года.
  21. Guo H, Yi W, Song JK, Wang PG (2008). «Current understanding on biosynthesis of microbial polysaccharides». Curr Top Med Chem 8 (2): 141–51. DOI:10.2174/156802608783378873. PMID 18289083.
  22. Cornelis P (editor). Pseudomonas: Genomics and Molecular Biology. — 1st. — Caister Academic Press, 2008. — ISBN [1].

См. также

Общие:
Геометрия
Моносахариды
Диозы
Триозы
Тетрозы
Пентозы
ГексозаКетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)
Гептозы
>7
Мультисахариды
Производные углеводов

Олигосахариды — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 июня 2018; проверки требуют 105 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 июня 2018; проверки требуют 105 правок.

Олигосахариды — углеводы, содержащие от 2 до 10 моносахаридных остатков (от греч. ὀλίγος — немногий).

Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомоолигосахаридами, а из разных — гетероолигосахаридами.

Наиболее распространёнными из олигосахаридов являются дисахариды и трисахариды. По химической природе дисахариды — это О-гликозиды (ацетали), в которых вторая молекула моносахарида выполняет роль агликона. В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие.

Строгая номенклатура олигосахаридов весьма громоздка. Название олигосахарида образуется по типу О-замещенных производных моносахаридов, исходя из названия восстанавливающего звена с указанием всех имеющихся заместителей; для невосстанавливающих олигосахаридов номенклатура аналогична номенклатуре гликозидов. В названиях линейных олигосахаридов часто применяется последовательное перечисление моносахаридных остатков с указанием типа связи между ними.

1. Дисахариды (диозы) С12H22O11

Структурная формула Тривиальное название Систематическое название
Трегалулоза α-D-глюкопиранозил-(1,1)-D-фруктоза
Sucrose structure formula inkscape.svg Сахароза (сукроза) α-D-глюкопиранозил-(1,2)-β-D-фруктофураноза
Turanose.png Тураноза α-D-глюкопиранозил-(1,3)-β-D-фруктофураноза
Maltulose.svg Мальтулоза α-D-глюкопиранозил-(1,4)-D-фруктоза
Isomaltulose.png Изомальтулоза (палатиноза) α-D-глюкопиранозил-(1,6)-β-D-фруктофураноза
Trehalose skeletal.svg Трегалоза (микоза) 1-О-α-D-глюкопиранозил-D-глюкоза
α-D-глюкопиранозил-(1,1)-α-D-глюкопираноза (α,α-трегалоза)>
α-D-глюкопиранозил-(1,1)-β-D-глюкопираноза (β,β-трегалоза)
Kojibiose.png Койибиоза α-D-глюкопиранозил-(1,2)-D-глюкоза
Sophorose.png Софороза 2-О-β-D-глюкопиранозил-D-глюкоза
β-D-глюкопиранозил-(1,2)-α-D-глюкопираноза (α-софороза)
β-D-глюкопиранозил-(1,2)-β-D-глюкопираноза (β-софороза)
Nigerose structure.svg Нигероза (сейкбиоза) α-D-глюкопиранозил-(1,3)-D-глюкоза
Laminaribiose.svg Ламинарибиоза β-D-глюкопиранозил-(1,3)-β-D-глюкопираноза
Maltose Haworth.svg Мальтоза α-D-глюкопиранозил-(1,4)-α-D-глюкопираноза
4-O-α-D-глюкопиранозил-D-глюкоза (α-мальтоза)
α-D-глюкопиранозил-(1-4)-β-D-глюкопираноза
4-O-β-D-глюкопиранозил-D-глюкоза (β-мальтоза)
Cellobiose.svg Целлобиоза (Целлоза) 4-О-β-D-глюкопиранозил-D-глюкоза
β-D-глюкопиранозил-(1,4)-α-D-глюкопираноза (α-целлобиоза)

β-D-глюкопиранозил-(1,4)-β-D-глюкопираноза (β-целлобиоза)

Isomaltose.svg Изомальтоза α-D-глюкопиранозил-(1,6)-α-D-глюкопираноза
Gentiobiose.png Генциобиоза (амигдалоза) β-D-глюкопиранозил-(1,6)-β-D-глюкопираноза
Лактоза (лактобиоза,таблеттоза) 4-О-β-D-галактопиранозил-D-глюкоза,
β-D-галактопиранозил-(1,4)-α-D-глюкопираноза (α-лактоза)

β-D-галактопиранозил-(1,4)-β-D-глюкопираноза (β-лактоза)

Allolactose.png Аллолактоза β-D-галактопиранозил (1,6)-β-D-глюкопираноза
Melibiose structure.svg Мелибиоза α-D-галактопиранозил (1,6)-D-глюкоза
2alpha-Mannobiose.svg 2α-Маннобиоза α-D-маннопиранозил-(1,2)-α-D-маннопираноза,
2-O-α-D-маннопиранозил-D-манноза
3alpha-Mannobiose.png 3α-Маннобиоза α-D-маннопиранозил-(1,3)-α-D-маннопираноза,
3-O-α-D-маннопиранозил-D-манноза
Инулобиоза β-D-фруктофуранозил-(2,1)-D-фруктоза
Леванбиоза β-D-фруктофуранозил-(2,6)-D-фруктоза
Lactulose.png Лактулоза β-D-галактопиранозил-(1,4)-β-D-фруктофураноза
Melibiulose.png Мелибиуоза α-D-галактопиранозил-(1,6)-D-фруктоза
Vicianose.svg Вицианоза α-D-арабинопиранозил-(1,6)-D-глюкопираноза
Sambubiose.svg Самбубиоза α-D-ксилофуранозил-(1,2)-β-D-глюкопираноза
Robinobiose.svg Робиноза (робинобиоза) α-D-рамнопиранозил-(1,6)-β-D-галактопираноза
Rutinose.png Рутиноза α-L-рамнопиранозил-(1,6)-β-D-глюкопираноза
Neohesperidose.svg Неогесперидоза α-L-рамнопиранозил-(1,2)-β-D-глюкопираноза
Люкроза
Неотрегалоза

2. Трисахариды (триозы) С18H32O16

Структурная формула Тривиальное название Систематическое название
Raffinose.svg Рафиноза (раффиноза) α-D-галактопиранозил-(1,6)-α-D-глюкопиранозил-(1,5)-β-D-фруктофураноза
Melezitose.png Мелицитоза α-D-глюкопиранозил-(1,3)-β-D-фруктофуранозил-(2,1)-α-D-глюкопираноза
Maltotriose.png Мальтотриоза α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопираноза
Изомальтотриоза α-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,6)-α-D-глюкопираноза
Gentianose.svg Генцианоза β-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,2)-β-D-фруктофуранозид
Солатриоза α-L-рамнопиранозил-(1,2)-[β-D-глюкопиранозил-(1,3)]-D-галактоза
Целлотриоза β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-D-глюкопираноза
Erlose.png Эрлоза (гликозилсукроза, 4G-α-D-глюкопиранозилсукроза) α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,2)-β-D-фруктофураноза
Panose.svg Паноза α-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,4)-α-D-фруктофураноза
150px Нигеротриоза α-D-глюкопиранозил-(1,3)-α-D-глюкопиранозил-(1,3)-α-D-глюкопираноза
1-Кестоза (1F-β-D-фруктозилсахароза, 1F-кестотриоза, изокестоза)) β-D-фруктофуранозил-(2,1)-D-глюкопиранозил-(1,2)-β-D-фруктофураноза
6-Кестоза (6F-β-D-фруктозилсахароза, 6F-кестотриоза) β-D-фруктофуранозил-(2,6)-D-глюкопиранозил-(1,2)-β-D-фруктофураноза
Неокестоза (6G-β-D-фруктозилсахароза, 6G-кестотриоза) β-D-фруктофуранозил-(1,6)-α-D-глюкопиранозил-(1,2)-β-D-фруктофураноза
Инулотриоза (фруктотриоза) β-D-фруктофуранозил-(2,1)-β-D-фруктофуранозил-(2.1)-β-D-фруктофураноза
2-фукозиллактоза α-L-фукопиранозил-(1,2)-β-D-галактопиранозил-(1.4)-D-глюкопираноза
3-фукозиллактоза α-L-фукопиранозил-(1,3)-[β-D-галактопиранозил-(1.4)]-D-глюкопираноза
Маннотриоза α-D-маннопиранозил-(1,4)-α-D-маннопиранозил-(1,4)-α-D-маннопираноза
Декстрантриоза α-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,6)-глюкоза

3. Тетрасахариды (тетраозы) С24H42O21

Структурная формула Тривиальное название Систематическое название
Stachyose.svg Стахиоза (маннеотетроза, дигалактозилсахароза)) α-D-галактопиранозил-(1,6)-α-D-галактопиранозил-(1,6)-α-D-глюкопиранозил-(1,2)-β-D-фруктофуранозид
Лихиоза α-D-галактопиранозил-(1,6)-α-D-глюкопиранозил-(1,2)-β-D-фруктофуранозил-(1,1)-α-D-галактопиранозид
Изолихиоза α-D-галактопиранозил-(1,6)-α-D-глюкопиранозил-(1,2)-β-D-фруктофуранозил-(3,1)-α-D-галактопиранозид
Сезамоза α-D-глюкопиранозил-(1,2)-β-D-фруктофуранозил-(6,1)-α-D-галактопиранозил-(6,1)-α-D-галактопиранозид
Целлотетраоза β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-D-галактопираноза
1,1-Кестотетраоза (нистоза) β-D-фруктофуранозил-(2,1)-β-D-фруктофуранозил-(2,1)-α-D-глюкопиранозил-(1,2)-β-D-фруктофураноза
Мальтотетраоза α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопираноза
Изомальтотетраоза α-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,6)-α-D-глюкопираноза
Изомальтотетраоза α-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,6)-α-D-глюкопиранозил-(1,6)-α-D-глюкопираноза
Рамниноза

4. Пентасахариды (пентаозы) С30H52O26

Структурная формула Тривиальное название Систематическое название
1,1,1-Кестопентоза (Фруктозилнистоза) β-D-фруктофуранозил-(2,1)-β-D-фруктофуранозил-(2,1)-β-D-фруктофуранозил-(2,1)-α-D-глюкопиранозил-(1,2)-β-D-фруктофураноза
Мальтопентаоза α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопираноза
Целлопентаоза β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-D-галактопираноза
Вербаскоза (тригалактозилсахароза) α-D-галактопиранозил-(1,6)-α-D-галактопиранозил-(1,6)-α-D-галактопиранозил-(1,6)-α-D-глюкопиранозил-(1,2)-β-D-фруктофураноза

5. Гексасахариды (гексаозы) С36H62O31

Структурная формула Тривиальное название Систематическое название
Мальтогексаоза α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопиранозил-(1,4)-α-D-глюкопираноза
Целлогексаоза β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-D-галактопираноза

6. Гептасахариды (гептаозы) С42H72O36

Структурная формула Тривиальное название Систематическое название
Целлогептаоза β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-β-D-глюкопиранозил-(1,4)-D-галактопираноза

Гомоолигосахариды[править | править код]

Дисахариды:

Трисахариды:

Тетрасахариды:

Пентасахариды:

Гексасахариды:

Гетероолигосахариды[править | править код]

Дисахариды:

Многие олигосахариды — это твёрдые кристаллические вещества или некристаллизующиеся сиропы, белого цвета или бесцветные, хорошо растворимые в воде, мало растворимые в низших спиртах и практически нерастворимые в других обычных растворителях, за исключением диметилформамида, формамида и диметилсульфоксида. При повышенных температурах низшие олигосахариды растворимы в уксусной кислоте и пиридине. Некоторые высшие неразветвлённые регулярные олигосахариды типа целлодекстринов с трудом растворяются в воде, причём с ростом молекулярного веса их растворимость быстро падает. Многие олигосахариды имеют сладкий вкус[1].

В свободном состоянии олигосахариды наиболее широко представлены в растительном мире, где они, по-видимому, в первую очередь играют роль резервных углеводов. Характерными и наиболее распространёнными представителями растительных олигосахаридов являются олигосахариды группы сахарозы: мелицитоза, рафиноза, генцианоза, стахиоза и др.

Некоторые олигосахариды, такие как сахароза, имеют огромное практическое значение и по масштабам ежегодного получения (свыше 100 млн тонн) занимают одно из первых мест среди индивидуальных органических соединений. В небольших количествах производятся лактоза и циклодекстрины, используемые в фармацевтической промышленности.

  1. H. К. Кочетков, А. Ф. Бочков, Б. А. Дмитриев, А.И. Усов О. С. Чижов, В. Н. Шибаев. Химия углеводов. — М: Химия, 1967. — 674 с.
⛭
Общие:
Геометрия
Моносахариды
Диозы
Триозы
Тетрозы
Пентозы
ГексозыКетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)
Гептозы
>7
Мультисахариды
Производные углеводов

Полисахариды Википедия

Полисахариды — высокомолекулярные углеводы, полимеры моносахаридов (гликаны). Молекулы полисахаридов представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды. У живых организмов выполняют резервные (крахмал, гликоген), структурные (целлюлоза, хитин) и другие функции.

Свойства полисахаридов значительно отличаются от свойств их мономеров и зависят не только от состава, но и от строения (в частности, разветвлённости) молекул. Они могут быть аморфными или даже нерастворимыми в воде.[1][2] Если полисахарид состоит из одинаковых моносахаридных остатков, он называется гомополисахаридом или гомогликаном, а если из разных — гетерополисахаридом или гетерогликаном.[3][4]

Природные сахариды чаще всего состоят из моносахаридов с формулой (CH2O)n, где n ≥3 (например, глюкоза, фруктоза и глицеральдегид)[5]. Общая формула большинства полисахаридов — Cx(H2O)y, где x обычно лежит между 200 и 2500. Чаще всего мономерами являются шестиуглеродные моносахариды, и в таком случае формула полисахарида выглядит как (C6H10O5)n, где 40≤n≤3000.

Полисахаридами обычно называют полимеры, содержащие больше десяти моносахаридных остатков. Резкой границы между полисахаридами и олигосахаридами нет. Полисахариды являются важной подгруппой биополимеров. Их функция в живых организмах обычно либо структурная, либо резервная. Запасным веществом высших растений обычно служит крахмал, состоящий из амилозы и амилопектина (полимеров глюкозы). У животных есть похожий, но более плотный и разветвленный полимер глюкозы — гликоген, или «животный крахмал». Он может быть использован быстрее, что связано с активным метаболизмом животных.

Целлюлоза и хитин — структурные полисахариды. Целлюлоза служит структурной основой клеточной стенки растений, это наиболее распространенное органическое вещество на Земле.[6] Она используется при производстве бумаги и тканей, и в качестве исходного сырья для производства вискозы, ацетилцеллюлозы, целлулоида и нитроцеллюлозы. Хитин имеет такую же структуру, но с азотсодержащим боковым ответвлением, увеличивающим его прочность. Он есть в экзоскелетах членистоногих и в клеточных стенках некоторых грибов. Он также используется во многих производствах, включая хирургические иглы. Полисахариды также включают каллозу, ламинарин, хризоламинарин, ксилан, арабиноксилан, маннан, фукоидан и галактоманнаны.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *