БЕЛКИ — это… Что такое БЕЛКИ?
где R — атом водорода или какая-нибудь органическая группа. Белковая молекула (полипептидная цепь) может состоять всего лишь из относительно небольшого числа аминокислот или из нескольких тысяч мономерных звеньев. Соединение аминокислот в цепи возможно потому, что у каждой из них имеются две разные химические группы: обладающая основными свойствами аминогруппа, Nh3, и кислотная карбоксильная группа, СООН. Обе эти группы присоединены к a-атому углерода. Карбоксильная группа одной аминокислоты может образовать амидную (пептидную) связь с аминогруппой другой аминокислоты:
После того как две аминокислоты таким образом соединились, цепь может наращиваться путем добавления ко второй аминокислоте третьей и т.д. Как видно из приведенного выше уравнения, при образовании пептидной связи выделяется молекула воды. В присутствии кислот, щелочей или протеолитических ферментов реакция идет в обратном направлении: полипептидная цепь расщепляется на аминокислоты с присоединением воды. Такая реакция называется гидролизом. Гидролиз протекает спонтанно, а для соединения аминокислот в полипептидную цепь требуется энергия. Карбоксильная группа и амидная группа (или сходная с ней имидная — в случае аминокислоты пролина) имеются у всех аминокислот, различия же между аминокислотами определяются природой той группы, или «боковой цепи», которая обозначена выше буквой R. Роль боковой цепи может играть и один атом водорода, как у аминокислоты глицина, и какая-нибудь объемистая группировка, как у гистидина и триптофана. Некоторые боковые цепи в химическом смысле инертны, тогда как другие обладают заметной реакционной способностью. Синтезировать можно многие тысячи различных аминокислот, и множество различных аминокислот встречается в природе, но для синтеза белков используется только 20 видов аминокислот: аланин, аргинин, аспарагин, аспарагиновая кислота, валин, гистидин, глицин, глутамин, глутаминовая кислота, изолейцин, лейцин, лизин, метионин, пролин, серин, тирозин, треонин, триптофан, фенилаланин и цистеин (в белках цистеин может присутствовать в виде димера — цистина). Правда, в некоторых белках присутствуют и другие аминокислоты, помимо регулярно встречающихся двадцати, но они образуются в результате модификации какой-нибудь из двадцати перечисленных уже после того, как она включилась в белок.
АСИММЕТРИЧЕСКИЙ АТОМ УГЛЕРОДА в молекуле аминокислоты изображен здесь в виде шарика, помещенного в центр тетраэдра. Представленное расположение четырех замещающих групп соответствует L-конфигурации, характерной для всех природных аминокислот.
Последовательность аминокислот. Аминокислоты в полипептидной цепи располагаются не случайным образом, а в определенном фиксированном порядке, и именно этот порядок определяет функции и свойства белка. Варьируя порядок расположения 20 видов аминокислот, можно получить огромное число разных белков, точно так же, как из букв алфавита можно составить множество разных текстов. В прошлом на определение аминокислотной последовательности какого-нибудь белка уходило нередко несколько лет. Прямое определение и теперь достаточно трудоемкое дело, хотя созданы приборы, позволяющие вести его автоматически. Обычно проще бывает определить нуклеотидную последовательность соответствующего гена и вывести из нее аминокислотную последовательность белка. К настоящему времени уже определены аминокислотные последовательности многих сотен белков. Функции расшифрованных белков, как правило, известны, и это помогает представить себе возможные функции сходных белков, образующихся, например, при злокачественных новообразованиях.
Третичная структура. Важна не столько сама аминокислотная последовательность белка (первичная структура), сколько способ ее укладки в пространстве. По всей длине полипептидной цепи ионы водорода образуют регулярные водородные связи, которые придают ей форму спирали либо слоя (вторичная структура). Из комбинации таких спиралей и слоев возникает компактная форма следующего порядка — третичная структура белка. Вокруг связей, удерживающих мономерные звенья цепи, возможны повороты на небольшие углы. Поэтому с чисто геометрической точки зрения число возможных конфигураций для любой полипептидной цепи бесконечно велико. В действительности же каждый белок существует в норме только в одной конфигурации, определяемой его аминокислотной последовательностью. Структура эта не жесткая, она как бы «дышит» — колеблется вокруг некой средней конфигурации. Цепь складывается в такую конфигурацию, при которой свободная энергия (способность производить работу) минимальна, подобно тому как отпущенная пружина сжимается лишь до состояния, соответствующего минимуму свободной энергии. Нередко одна часть цепи бывает жестко сцеплена с другой дисульфидными (-S-S-) связями между двумя остатками цистеина. Отчасти именно поэтому цистеин среди аминокислот играет особо важную роль. Сложность строения белков столь велика, что пока еще невозможно вычислить третичную структуру белка, если даже известна его аминокислотная последовательность. Но если удается получить кристаллы белка, то его третичную структуру можно определить по дифракции рентгеновских лучей. У структурных, сократительных и некоторых других белков цепи вытянуты и несколько лежащих рядом слегка свернутых цепей образуют фибриллы; фибриллы, в свою очередь, складываются в более крупные образования — волокна. Однако большинство белков в растворе имеет глобулярную форму: цепи свернуты в глобуле, как пряжа в клубке. Свободная энергия при такой конфигурации минимальна, поскольку гидрофобные («отталкивающие воду») аминокислоты скрыты внутри глобулы, а гидрофильные («притягивающие воду») находятся на ее поверхности. Многие белки — это комплексы из нескольких полипептидных цепей. Такое строение называется четвертичной структурой белка. Молекула гемоглобина, например, состоит из четырех субъединиц, каждая из которых представляет собой глобулярный белок. Структурные белки благодаря своей линейной конфигурации образуют волокна, у которых предел прочности на разрыв очень высок, глобулярная же конфигурация позволяет белкам вступать в специфические взаимодействия с другими соединениями. На поверхности глобулы при правильной укладке цепей возникают определенной формы полости, в которых размещены реакционноспособные химические группы. Если данный белок — фермент, то другая, обычно меньшая, молекула какого-то вещества входит в такую полость подобно тому, как ключ входит в замок; при этом меняется конфигурация электронного облака молекулы под влиянием находящихся в полости химических групп, и это вынуждает ее определенным образом реагировать. Таким способом фермент катализирует реакцию. В молекулах антител тоже имеются полости, в которых различные чужеродные вещества связываются и тем самым обезвреживаются. Модель «ключа и замка», объясняющая взаимодействие белков с другими соединениями, позволяет понять специфичность ферментов и антител, т.е. их способность реагировать только с определенными соединениями. Белки у разных видов организмов. Белки, выполняющие одну и ту же функцию у разных видов растений и животных и потому носящие одно и то же название, имеют и сходную конфигурацию. Они, однако, несколько различаются по своей аминокислотной последовательности. По мере того как виды дивергируют от общего предка, некоторые аминокислоты в определенных положениях замещаются в результате мутаций другими. Вредные мутации, являющиеся причиной наследственных болезней, выбраковываются естественным отбором, но полезные или по крайней мере нейтральные могут сохраняться. Чем ближе друг к другу два каких-нибудь биологических вида, тем меньше различий обнаруживается в их белках. Некоторые белки меняются относительно быстро, другие весьма консервативны. К последним принадлежит, например, цитохром с — дыхательный фермент, имеющийся у большинства живых организмов. У человека и шимпанзе его аминокислотные последовательности идентичны, а в цитохроме с пшеницы иными оказались лишь 38% аминокислот. Даже сравнивая человека и бактерии, сходство цитохромов с (различия затрагивают здесь 65% аминокислот) все еще можно заметить, хотя общий предок бактерии и человека жил на Земле около двух миллиардов лет назад. В наше время сравнение аминокислотных последовательностей часто используют для построения филогенетического (генеалогического) древа, отражающего эволюционные связи между разными организмами.
Для синтеза белка живой организм должен располагать системой ферментов, способных присоединять одну аминокислоту к другой. Необходим также источник информации, которая бы определяла, какие именно аминокислоты следует соединять. Поскольку в организме имеются тысячи видов белков и каждый из них состоит в среднем из нескольких сотен аминокислот, необходимая информация должна быть поистине огромной. Хранится она (подобно тому, как хранится запись на магнитной ленте) в молекулах нуклеиновых кислот, из которых состоят гены.
См. также
НАСЛЕДСТВЕННОСТЬ;
НУКЛЕИНОВЫЕ КИСЛОТЫ.
Активация ферментов. Синтезированная из аминокислот полипептидная цепь — это далеко не всегда белок в его окончательной форме. Многие ферменты синтезируются сначала в виде неактивных предшественников и переходят в активную форму лишь после того, как другой фермент удалит на одном из концов цепи несколько аминокислот. В такой неактивной форме синтезируются некоторые из пищеварительных ферментов, например трипсин; эти ферменты активируются в пищеварительном тракте в результате удаления концевого фрагмента цепи. Гормон инсулин, молекула которого в активной форме состоит из двух коротких цепей, синтезируется в виде одной цепи, т.н. проинсулина. Затем средняя часть этой цепи удаляется, а оставшиеся фрагменты связываются друг с другом, образуя активную молекулу гормона. Сложные белки образуются лишь после того, как к белку будет присоединена определенная химическая группа, а для этого присоединения часто тоже требуется фермент.
Метаболический кругооборот. После скармливания животному аминокислот, меченных радиоактивными изотопами углерода, азота или водорода, метка быстро включается в его белки. Если меченые аминокислоты перестают поступать в организм, то количество метки в белках начинает снижаться. Эти эксперименты показывают, что образовавшиеся белки не сохраняются в организме до конца жизни. Все они, за немногими исключениями, находятся в динамичном состоянии, постоянно распадаются до аминокислот, а затем вновь синтезируются. Некоторые белки распадаются, когда гибнут и разрушаются клетки. Это постоянно происходит, например, с эритроцитами и клетками эпителия, выстилающего внутреннюю поверхность кишечника. Кроме того, распад и ресинтез белков протекают и в живых клетках. Как ни странно, о распаде белков известно меньше, чем об их синтезе. Ясно, однако, что в распаде участвуют протеолитические ферменты, сходные с теми, которые расщепляют белки до аминокислот в пищеварительном тракте. Период полураспада у разных белков различен — от нескольких часов до многих месяцев. Единственное исключение — молекулы коллагена. Однажды образовавшись, они остаются стабильными, не обновляются и не замещаются. Со временем, однако, меняются некоторые их свойства, в частности эластичность, а поскольку они не обновляются, следствием этого оказываются определенные возрастные изменения, например появление морщин на коже.
Синтетические белки. Химики давно уже научились полимеризовать аминокислоты, но аминокислоты соединяются при этом неупорядоченно, так что продукты такой полимеризации мало похожи на природные. Правда, имеется возможность соединять аминокислоты в заданном порядке, что позволяет получать некоторые биологически активные белки, в частности инсулин. Процесс достаточно сложен, и таким способом удается получать лишь те белки, в молекулах которых содержится около сотни аминокислот. Предпочтительнее вместо этого синтезировать или выделить нуклеотидную последовательность гена, соответствующую желаемой аминокислотной последовательности, а затем ввести этот ген в бактерию, которая и будет вырабатывать путем репликации большое количество нужного продукта. У этого метода, впрочем, тоже есть свои недостатки.
См. также ГЕННАЯ ИНЖЕНЕРИЯ.
БЕЛКИ И ПИТАНИЕ
Когда белки в организме распадаются до аминокислот, эти аминокислоты могут быть снова использованы для синтеза белков. В то же время и сами аминокислоты подвержены распаду, так что они реутилизируются не полностью. Ясно также, что в период роста, при беременности и заживлении ран синтез белков должен превышать распад. Некоторые же белки организм непрерывно теряет; это белки волос, ногтей и поверхностного слоя кожи. Поэтому для синтеза белков каждый организм должен получать аминокислоты с пищей.
Источники аминокислот. Зеленые растения синтезируют из СО2, воды и аммиака или нитратов все 20 аминокислот, встречающихся в белках. Многие бактерии тоже способны синтезировать аминокислоты при наличии сахара (или какого-нибудь его эквивалента) и фиксированного азота, но и сахар, в конечном счете, поставляется зелеными растениями. У животных способность к синтезу аминокислот ограниченна; они получают аминокислоты, поедая зеленые растения или других животных. В пищеварительном тракте поглощенные белки расщепляются до аминокислот, последние всасываются, и уже из них строятся белки, характерные для данного организма. Ни один поглощенный белок не включается в структуры тела как таковой. Единственное исключение заключается в том, что у многих млекопитающих часть материнских антител может в интактном виде попасть через плаценту в кровоток плода, а через материнское молоко (особенно у жвачных) быть передано новорожденному сразу же после его появления на свет.
Потребность в белках. Ясно, что для поддержания жизни организм должен получать с пищей некоторое количество белков. Однако размеры этой потребности зависят от ряда факторов. Организму необходима пища и как источник энергии (калорий), и как материал для построения его структур. На первом месте стоит потребность в энергии. Это значит, что, когда углеводов и жиров в рационе мало, пищевые белки используются не для синтеза собственных белков, а в качестве источника калорий. При длительном голодании даже собственные белки расходуются на удовлетворение энергетических нужд. Если же углеводов в рационе достаточно, то потребление белков может быть снижено.
Азотистый баланс. В среднем ок. 16% всей массы белка составляет азот. Когда входившие в состав белков аминокислоты расщепляются, содержавшийся в них азот выводится из организма с мочой и (в меньшей мере) с калом в виде различных азотистых соединений. Удобно поэтому для оценки качества белкового питания использовать такой показатель, как азотистый баланс, т.е. разность (в граммах) между количеством азота, поступившего в организм, и количеством выведенного азота за сутки. При нормальном питании у взрослого эти количества равны. У растущего организма количество выведенного азота меньше количества поступившего, т.е. баланс положителен. При нехватке белков в рационе баланс отрицателен. Если калорий в рационе достаточно, но белки в нем полностью отсутствуют, организм сберегает белки. Белковый обмен при этом замедляется, и повторная утилизация аминокислот в синтезе белка идет с максимально возможной эффективностью. Однако потери неизбежны, и азотистые соединения все же выводятся с мочой и частично с калом. Количество азота, выведенного из организма за сутки при белковом голодании, может служить мерой суточной нехватки белка. Естественно предположить, что, введя в рацион количество белка, эквивалентное этому дефициту, можно восстановить азотистый баланс. Однако это не так. Получив такое количество белка, организм начинает использовать аминокислоты менее эффективно, так что для восстановления азотистого баланса требуется некоторое дополнительное количество белка. Если количество белка в рационе превышает необходимое для поддержания азотистого баланса, то вреда от этого, по-видимому, нет. Избыток аминокислот просто используется как источник энергии. В качестве особенно яркого примера можно сослаться на эскимосов, которые потребляют мало углеводов и примерно в десять раз больше белка, чем требуется для поддержания азотистого баланса. В большинстве случаев, однако, использование белка в качестве источника энергии невыгодно, поскольку из определенного количества углеводов можно получить намного больше калорий, чем из такого же количества белка. В бедных странах население получает необходимые калории за счет углеводов и потребляет минимальное количество белка. Если необходимое число калорий организм получает в форме небелковых продуктов, то минимальное количество белка, обеспечивающее поддержание азотистого баланса, составляет для взрослого человека ок. 30 г в день. Примерно столько белка содержится в четырех ломтиках хлеба или 0,5 л молока. Оптимальным считают обычно несколько большее количество; рекомендуется от 50 до 70 г.
Незаменимые аминокислоты. До сих пор белок рассматривался как нечто целое. Между тем для того, чтобы мог идти синтез белка, в организме должны присутствовать все необходимые аминокислоты. Некоторые из аминокислот организм животного сам способен синтезировать. Их называют заменимыми, поскольку они не обязательно должны присутствовать в рационе, — важно лишь, чтобы в целом поступление белка как источника азота было достаточным; тогда при нехватке заменимых аминокислот организм может синтезировать их за счет тех, что присутствуют в избытке. Остальные, «незаменимые», аминокислоты не могут быть синтезированы и должны поступать в организм с пищей. Для человека незаменимыми являются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, гистидин, лизин и аргинин. (Хотя аргинин и может синтезироваться в организме, его относят к незаменимым аминокислотам, поскольку у новорожденных и растущих детей он образуется в недостаточном количестве. С другой стороны, для человека зрелого возраста поступление некоторых из этих аминокислот с пищей может стать необязательным.) Этот список незаменимых аминокислот приблизительно одинаков также и у других позвоночных и даже у насекомых. Питательную ценность белков обычно определяют, скармливая их растущим крысам и следя за прибавкой веса животных.
Питательная ценность белков. Питательную ценность белка определяют по той незаменимой аминокислоте, которой более всего не хватает. Проиллюстрируем это на примере. В белках нашего тела содержится в среднем ок. 2% триптофана (по весу). Допустим, что в рацион входит 10 г белка, содержащего 1% триптофана, и что других незаменимых аминокислот в нем достаточно. В нашем случае 10 г этого неполноценного белка по сути эквивалентны 5 г полноценного; остальные 5 г могут послужить только источником энергии. Отметим, что, поскольку аминокислоты в организме практически не запасаются, а для того чтобы мог идти синтез белка, должны одновременно присутствовать все аминокислоты, эффект от поступления незаменимых аминокислот можно обнаружить лишь в том случае, если все они поступят в организм одновременно. Усредненный состав большей части животных белков близок к усредненному составу белков человеческого тела, так что аминокислотная недостаточность нам вряд ли грозит, если наш рацион богат такими продуктами, как мясо, яйца, молоко и сыр. Однако есть белки, например желатин (продукт денатурации коллагена), которые содержат очень мало незаменимых аминокислот. Растительные белки, хотя они в этом смысле и лучше желатина, тоже бедны незаменимыми аминокислотами; особенно мало в них лизина и триптофана. Тем не менее и чисто вегетарианскую диету вовсе нельзя считать вредной, если только при этом потребляется несколько большее количество растительных белков, достаточное для того, чтобы обеспечить организм незаменимыми аминокислотами. Больше всего белка содержится у растений в семенах, особенно в семенах пшеницы и различных бобовых культур. Богаты белком также и молодые побеги, например у спаржи.
Синтетические белки в рационе. Добавляя небольшие количества синтетических незаменимых аминокислот или богатых ими белков к неполноценным белкам, например к белкам кукурузы, можно значительно повысить питательную ценность последних, т.е. тем самым как бы увеличить количество потребляемого белка. Другая возможность состоит в выращивании бактерий или дрожжей на углеводородах нефти с добавлением нитратов или аммиака в качестве источника азота. Полученный таким путем микробный белок может служить кормом для домашней птицы или скота, а может и непосредственно потребляться человеком. Третий, широко применяющийся, метод использует особенности физиологии жвачных животных. У жвачных в начальном отделе желудка, т.н. рубце, обитают особые формы бактерий и простейших, которые превращают неполноценные растительные белки в более полноценные микробные белки, а эти, в свою очередь, — после переваривания и всасывания — превращаются в животные белки. К корму скота можно добавить мочевину — дешевое синтетическое азотсодержащее соединение. Обитающие в рубце микроорганизмы используют азот мочевины для превращения углеводов (которых в корме значительно больше) в белок. Около трети всего азота в корме скота может поступать в виде мочевины, что по сути и означает в определенной мере химический синтез белка. В США этот метод играет важную роль как один из способов получения белка.
ЛИТЕРАТУРА
Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека, тт. 1-2. М., 1993 Албертс Б., Брей Д., Льюс Дж. и др. Молекулярная биология клетки, тт. 1-3. М., 1994
Энциклопедия Кольера. — Открытое общество. 2000.
Что такое белки — строение и функции
Белки играют центральную роль в организме человека, выполняя одни из самых важных функций: двигательную, защитную, биологическую, регуляторную и другие.
Без этих универсальных молекулярных машин жизнь на нашей планете и вовсе не могла бы появиться.
В данной статье мы подробно рассмотрим что такое белки, какие существуют виды, где содержатся и многое другое.
Что такое белок и каковы его функции
На уроках биологии и химии довольно много времени уделяется этой важной теме. Белки (protein) являются природными гетерополимерами, состоящие из α-аминокислот. Соединяет их вместе пептидная связь. Для синтеза огромного множества белков в человеческом организме используется 20.
Состав каждого белка, синтезированного в организме, определяется геномом. Различные комбинации генетического кода позволяют создавать из стандартных аминокислот огромное множество белков, отвечающих за разнообразные функции в нашем теле.
Некоторые белки довольно сложно классифицировать исключительно по их функциям. Так как один белок часто может отвечать за выполнение нескольких задач.
Список функций белков выглядит следующим образом:
- Структурная – отвечает за образование цитоскелета клеток, придает форму разным тканям. Наиболее известные — это коллагены и эластин, входящие в состав межклеточного вещества. А также кератин – основной белок, формирующий ногти и волосы.
- Защитная функция разделяется на физическую, иммунную и химическую. За физическую защиту в основном отвечают тромбины, свертывающие кровь, и коллагены и кератин, формирующие роговые щитки, волосы, кожу. Химическую защиту от различных токсинов в организме выполняют в основном ферменты печени. Они растворяют токсины, позволяя быстрее вывести их. За иммунную защиту отвечают различные иммуноглобулины.
- Каталитическая функция использует ферменты. Это особые белки, позволяющие катализировать реакции, расщепляющие большие молекулы, или же наоборот их синтезировать. Ферменты позволяют ускорять все химические реакции в сотни и тысячи раз. За последнее время науке стало известно свыше 5000 различных ферментов.
- Регуляторная функция отвечает за управление всей жизнедеятельностью клетки. Белки из данной группы регулируют количество и активность остальных белков, а также множество процессов внутри самой клетки.
- Сигнальная функция выполняется гормонами и цитокинами. Эти белки являются сигнальным веществом, позволяя передавать информацию или сигналы частями организма.
- Транспортная – позволяет переносить различные вещества от одних органов и клеток к другим. Наиболее известный пример – это гемоглобин, транспортирующий кислород и углекислый газ.
- Запасная функция. Ее выполняют белки, запасающиеся в организме для экстренных случаев в качестве энергии или источника аминокислот.
- Рецепторная. Ее выполняют белки, реагирующие свет, физическое воздействие или химическое вещество.
- Моторная функция выполняется целыми группами белков. Среди них, например, актин и миозин. Они являются основными компонентами мышц и позволяют им сокращаться. Другие белки позволяют клеткам лейкоцитов передвигаться внутри организма.
Строение белков
Беки относятся к линейным полимерам. В их составе могут присутствовать несколько α-амиокислот и неаминокислотные компоненты. На первый взгляд всего 20 аминокислот – это небольшой выбор.
Но на самом деле молекула белка, состоящая всего из 5 компонентов аминокислот, может иметь свыше миллиона вариантов построения. Небольшой белок может иметь в своей цепочке сотню аминокислотных остатков.
При синтезе белка аминокислоты соединяются благодаря пептидной связи. Они соединяются разными концами, одна с помощью карбоксильной группы (-COOH), а другая аминогруппой (-NH2). При таком соединении у белка появляются два соответственных конца С и N.
Структуры белков
Структурные организации белков классифицируют на 4 уровня. Это первичная, вторичная, третичная и четвертичная структуры.
Первичная представляет собой стандартную цепочку аминокислот. Их последовательность закодирована генетически. Она обычно описывается трехбуквенными обозначениями аминокислотных остатков в цепочке.
Вторичная представляет собой упорядоченно свернутую спиралеобразно цепочку аминокислот. Она напоминает пружинку. У спирали стабильная структура, так как ее витки крепятся между собой водородными связями. Почти все СО- и NН- группы устанавливают друг с другом такие связи. Среди белков данной структуры особенно выделяются коллагены и кератин.
Третичная – в основном формируется благодаря гидрофильно-гидрофобным взаимодействиям. Возникающие водородные ионные и дисульфидные связи способствуют взаимодействию между радикалами аминокислот. Благодаря этому полипептидная связь укладывается в специальные глобулы. К белкам третичной структуры уже относятся множество ферментов, антител и гормонов.
Четвертичная – присуща сложным формам ферментов или белков, которые состоят из 2 или 3 глобул. Они связываются в молекуле как ионными, так и гидрофобными взаимодействиями. А иногда возникают электростатические взаимодействия или дисульфидные связи. Наиболее известный и изученный белок данной классификации – гемоглобин.
Протеины и протеиды — простые и сложные белки
Еще одна классификация белков это – протеины и протеиды. Первые — это простые белки, в состав которых входят исключительно остатки аминокислот. А вот в протеидах, помимо основного скелета из аминокислот, присутствуют еще не белковые группы (простетические).
В зависимости от дополнительной небелковой составляющей протеиды делят на другие группы:
- Липопротеины – включают в себя различные липиды. В основном данные белки выполняют транспортировку липидов.
- Фосфопротеины – имеют фосфорную кислоту. К таким белкам относятся вителлин и казеноген.
- Металлопротеины – могут иметь катионы одного и более металлов в своей структуре. Наиболее известен гемоглобин с молекулами железа.
- Гликопротеины – имеют в своем составе различные углеводы.
- Нуклеопротеины – являются главными белками, отвечающими за передачу наследственной информации.
Физико-химические свойства белков
Белки проявляют свойства амфотерности (от греч. «двойственность). Они могут в зависимости от различных факторов проявлять как кислотные, так и основные свойства.
Также белки могут быть растворимыми или не растворимыми в воде. На растворимость могут влиять как сама структура белка, так и характер растворителя, pH самого раствора или ионная сила.
Белки могут быть гидрофобными или гидрофильными. Последние в основном располагаются в ядре, цитоплазме или межклеточном веществе.
Еще одно свойство белков это денатурация. Это так называемая потеря четвертичной, третичной структур. Белки отлично приспособлены для жизни и функционирования в условиях организма, но при резком изменении внешних условий структура белка может разрушиться.
Среди таких воздействий выделяют ультразвук, высокие и низкие температуры, облучения, встряхивания, вибрации, а также действие кислот или щелочей. Денатурация может быть как частичной, так и полной, или же обратимой и необратимой.
Значение белков для организма
Как мы увидели из вышеприведенных функций и особенностей, белки имеют огромное значение для организма человека. Они придают форму клеткам и тканям организма, переносят различные элементы между органами и клетками, отвечают за восприятие окружающего мира.
Белки защищают нас от природных факторов и от воздействий вредоносных микроорганизмов. Без них в принципе невозможно как минимум прохождение химических реакций в организме и обмен веществ, так и наличие жизни как самовоспроизводящейся структуры. По истине, роль белков сложно переоценить.
Что относится к белковой пище
Белки являются одним из самых основных строительных материалов для нашего организма. Поэтому, чтобы питание снабжало организм человека нужными веществами, следует всегда иметь в рационе белковые продукты.
Богаты по содержанию белка следующие:
- мясо;
- рыба;
- различные морепродукты;
- яйца;
- бобовые;
- молочные продукты.
Заключение
Белок является одним из ключевых элементов жизни на нашей планете. Он отвечает за множество процессов и функций в живом организме, а недостаток белков может вызвать серьезные заболевания.
Большое разнообразие источников белка убережет ваш организм от недостатка незаменимых аминокислот и множества других ценных элементов питания. Старайтесь не исключать белковые продукты из рациона и будьте здоровы.
Четвертичная структура — Википедия
Материал из Википедии — свободной энциклопедии
Четвертичная структураЧетвертичная структура — способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой (или разной) первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярного образования. Специфичность четвертичной структуры белков проявляется в определенной конформационной автономии полипептидных фрагментов, входящих в состав макромолекулы белка. Вклад гидрофобных взаимодействий в стабилизацию третичной и четвертичной структуры белков весьма значителен: в случае третичной структуры на их долю приходится больше половины стабилизирующей силы.
Примеры белков с четвертичной структурой включают гемоглобин, ДНК-полимеразу, ионные каналы. Номенклатура белков с четвертичной структурой также особая. Числа субъединиц в олигомерном комплексе описываются с помощью имен, которые заканчиваются на -мер (по-гречески «части, подразделения»).
Хотя комплексы выше, чем октамер, редко наблюдаются у большинства белков, существует несколько исключений: вирусный капсид; протеосомы (четыре кольца = 28 субъединиц), транскрипционный комплекс и сплайсосома. Рибосомы — крупнейшие молекулярные машины, состоящие из множества РНК и белковых молекул. В некоторых случаях белки образуют комплексы, которые затем собираются в еще большие комплексы. Четвертичная структура белков имеет отношение к существованию изоферментов. Особенно хорошо изучен в этом отношении благодаря исследованиям Каплана, Маркерта и их сотрудников фермент лактатдегидрогеназы; этот фермент был выделен из организма цыплёнка в двух основных формах, из которых одна характерна для скелетных мышц, а другая — для сердечной мышцы. Эти две формы заметно отличаются друг от друга как по аминокислотному составу, так и по некоторым физическим, иммунологическим и каталитическим свойствам.
Четвертичная структура белков варьируется очень широко. На некоторых электронных микрофотографиях ясно видны агрегаты белковых молекул, однако их тонкую структуру установить не удаётся.
Определение четвертичной структуры белка[править | править код]
Белки четвертичной структуры могут быть определены с использованием различных экспериментальных методов, которые требуют образца белка в различных экспериментальных условиях. Эксперименты часто обеспечивают оценку массы нативного белка и, вместе со знанием массы и/или стехиометрии субъединицы, позволяют предположить четвертичную структуру. Число субъединиц в белковом комплексе часто может быть определено путём измерения гидродинамического молекулярного объёма или массы комплекса. Некоторые методы биоинформатики были разработаны для прогнозирования признаков четвертичной структуры белков на основе информации об их последовательности.
Методы, которые измеряют массу интактного комплекса непосредственно[править | править код]
Методы, которые измеряют размер интактного комплекса непосредственно[править | править код]
БЕЛОК — это… Что такое БЕЛОК?
Белок А — (англ. protein A) это белок, молекулярной массой 40 60 кДа, выделенный с поверхности клеточной стенки золотистого стафилококка (Staphylococcus aureus). Белок А используется в биохимических исследованиях, так как хорошо связывает многие… … Википедия
Белок G — (англ. protein G) это белок, связывающий иммуноглобулины, который экспрессируются в стрептококках групп C и G. Белок G имеет сходства с белком А, но отличается специфичностью. Белок G имеет молекулярную массу 58 кДа (в случае белка… … Википедия
белок — вытаращить арабские белки.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. белок глобулин, гистон, протеиноид, протеин, протеиновое тело, протамин, протеид Словарь русских синонимов … Словарь синонимов
БЕЛОК — 1. БЕЛОК1, белка, муж. (биол. хим.). Важнейшая составная часть организма животных и растений; то же, что альбумин и белковина. 2. БЕЛОК2, белка, муж. 1. Выпуклая непрозрачная оболочка глаза. || только мн. Глаза (прост.). Белки выпучить. Белками… … Толковый словарь Ушакова
БЕЛОК — 1. БЕЛОК1, белка, муж. (биол. хим.). Важнейшая составная часть организма животных и растений; то же, что альбумин и белковина. 2. БЕЛОК2, белка, муж. 1. Выпуклая непрозрачная оболочка глаза. || только мн. Глаза (прост.). Белки выпучить. Белками… … Толковый словарь Ушакова
БЕЛОК — 1. БЕЛОК1, белка, муж. (биол. хим.). Важнейшая составная часть организма животных и растений; то же, что альбумин и белковина. 2. БЕЛОК2, белка, муж. 1. Выпуклая непрозрачная оболочка глаза. || только мн. Глаза (прост.). Белки выпучить. Белками… … Толковый словарь Ушакова
белок C — Белок, сериновая протеаза, синтезируемая клетками печени; антикоагулянт, является ингибитором факторов Va и VIIIa свертывания крови; частота гетерозигот по дефициту Б.C в популяциях человека достигает 1/200 данная аномалия связана с повышенным… … Справочник технического переводчика
белок — БЕЛОК, лка, муж. Высокомолекулярное органическое вещество, обеспечивающее жизнедеятельность животных и растительных организмов. | прил. белковый, ая, ое. Белковые корма (с высоким содержанием белка). II. БЕЛОК, лка, муж. 1. Прозрачная часть яйца … Толковый словарь Ожегова
Белок — Белок, связывающий жирные кислоты Белки, связывающие жирные кислоты (англ. fatty acid binding proteins, FABP; БСЖК) семейство транспортеров жирных кислот и других липофильных веществ, таких как эйкозаноиды и ретиноиды. Как считается, эти… … Википедия
белок — 1. БЕЛОК, лка; м. 1. Прозрачная жидкость, окружающая желток птичьего яйца. / О такой части куриного яйца как пище. Выпить сырой б. Взбитые белки. ◁ Белковый, ая, ое. Б. крем (из яичных белков). 2. БЕЛОК см. 1. Белки. 3. БЕЛОК см. 2. Белки. 4.… … Энциклопедический словарь
Вторичная структура — Википедия
Материал из Википедии — свободной энциклопедии
Вторичная структура — конформационное расположение главной цепи (англ. backbone) макромолекулы (например, полипептидная цепь белка или цепи нуклеиновых кислот), независимо от конформации боковых цепей или отношения к другим сегментам[1]. В описании вторичной структуры важным является определение водородных связей, которые стабилизируют отдельные фрагменты макромолекул.
Втори́чная структу́ра белка́ — пространственная структура, образующаяся в результате взаимодействия между функциональными группами пептидного остова.
Регулярные вторичные структуры[править | править код]
Регулярными называются вторичные структуры, образованные аминокислотными остатками с одинаковой конформацией главной цепи (углы φ и ψ), при разнообразии конформаций боковых групп.
К регулярным вторичным структурам относят:
- спирали, которые могут быть левозакрученными и правозакрученными с разным периодом и шагом. Большинство спиральных структур в полипептидных цепях поддерживается внутримолекулярными водородными связями. Водородная связь при этом образуется между карбонильной группой одного аминокислотного остатка и аминогруппой другого, лежащего ближе к N-концу полипептида[2]. Разные типы спиралей описываются цифровой записью вида ab, где a — номер по цепи аминокислотного остатка, который предоставляет аминогруппу для формирования водородной связи, b — количество атомов в цикле, замкнутом водородной связью. К спиральным структурам, которые встречаются в белках, относятся:
- α-спираль, или спираль 413, — самая распространённая в белках вторичная структура. Данная спираль характеризуется плотными витками вокруг длинной оси молекулы, один виток составляет 3,6 аминокислотных остатка, и шаг спирали составляет 0,54 нм[3] (так что на один аминокислотный остаток приходится 0,15 нм), спираль стабилизирована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена. Спираль построена исключительно из одного типа стереоизомеров аминокислот (L). Хотя она может быть как левозакрученной, так и правозакрученной, в белках преобладает правозакрученная. Спираль нарушают электростатические взаимодействия глутаминовой кислоты, лизина, аргинина. Расположенные близко друг к другу остатки аспарагина, серина, треонина и лейцина могут стерически мешать образованию спирали, остатки пролина вызывают изгиб цепи и также нарушают α-спирали.
- 310-спираль — очень «тугая» спираль, в сечении имеет форму треугольника, в белках встречается в основном её правая форма, и то только в виде 1-2 витков[2].
- π-спираль, или спираль 516, — спираль с широкими витками, в результате в центре спирали остаётся пустое пространство. В белках встречается редко, обычно не более одного витка.
- β-листы (β-структура, складчатые слои) — несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга (0,347 нм на аминокислотный остаток[3]) в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в α-спирали. Полипептидные цепи в составе β-листов могут быть направлены N-концами в противоположные стороны (антипараллельная β-структура), в одну сторону (параллельная β-структура), также возможно существование смешанной β-структуры (состоит из параллельной и антипараллельной β-структуры)[2]. Для образования β-листов важны небольшие размеры боковых групп аминокислот, преобладают обычно глицин и аланин. β-структура является второй по частоте встречаемости в белках после α-спирали.
- полипролиновая спираль — плотная левая спираль, которая стабилизирована Ван-дер-Ваальсовыми взаимодействиями, а не системой водородных связей. Такая структура формируется в полипептидных цепях, богатых пролином, где формирование насыщенной системы водородных связей по этой причине невозможно. Полипролиновая спираль типа poly(Pro)II реализуется в коллагене, при этом три левых полипролиновых спирали перевиваются в правую суперспираль, которая стабилизируется водородными связями между отдельными цепями[2].
Нерегулярные вторичные структуры[править | править код]
Нерегулярными называют стандартные вторичные структуры, аминокислотные остатки которых имеют разную конформацию главной цепи (углы φ и ψ). К нерегулярным вторичным структурам относят:
- повороты — нерегулярные участки полипептидной цепи, которые обеспечивают поворот её направления на 180°. Если участок, обеспечивающий поворот, достаточно длинный, используется термин «петля». В 1968 году при описании поворотов из минимально возможного числа аминокислотных остатков (4) Венкатачалам ввёл для них термин «β-изгиб»[4]. Также существуют повороты из 4, 5 и 6 аминокислотных остатков.
- полуповороты, или переходы, — нерегулярные участки полипептидной цепи, которые обеспечивают поворот её направления на 90°. Минимальный полуповорот состоит из 3 аминокислотных остатков.
Наиболее распространённой формой вторичной структуры ДНК является двойная спираль. Эта структура образуется из двух взаимно комплементарных антипараллельных полидезоксирибонуклеотидных цепей, закрученных относительно друг друга и общей оси в правую спираль[5]. При этом азотистые основания обращены внутрь двойной спирали, а сахарофосфатный остов — наружу. Впервые эту структуру описали Джеймс Уотсон и Френсис Крик в 1953 году[6].
В формировании вторичной структуры ДНК участвуют следующие типы взаимодействий:
В зависимости от внешних условий параметры двойной спирали ДНК могут меняться, причём иногда существенно. Правоспиральные ДНК со случайной нуклеотидной последовательностью можно грубо разделить на два семейства — А и В, главное отличие между которыми — конформация дезоксирибозы. К В-семейству также относятся С- и D-формы ДНК[7]. Нативная ДНК в клетке находится в В-форме. Важнейшие характеристики А- и В-форм ДНК приведены в таблице[7].
Признак | А-форма | В-форма | Z-форма |
---|---|---|---|
Спираль | правая | правая | левая |
Количество пар оснований на виток | 11 | 10 | 12 |
Шаг спирали | 28,6 Å | 33,6 Å | 45 Å |
Диаметр спирали | 23 Å | 20 Å | 18 Å |
Угол между плоскостями оснований и осью спирали | 70° | 90° | 100° |
Конформация гликозидной связи | анти | анти | анти (у пиримидина), син (у пурина) |
Конформация дезоксирибозы | С3’-эндо | С2’-эндо | С2’-эндо (у пиримидина), С3’-эндо (у пурина) |
Необычная форма ДНК была открыта в 1979 году[8]. Рентгеноструктурный анализ кристаллов, образованных гескануклеотидами вида d(CGCGCG), показал что такие ДНК существуют в виде левой двойной спирали. Ход сахарофосфатного остова такой ДНК можно описать зигзагообразной линией, поэтому этот вид ДНК было решено назвать Z-формой. Было показано, что ДНК с определённой последовательностью нуклеотидов может переходить из обычной В-формы в Z-форму в растворе высокой ионной силы и в присутствии гидрофобного растворителя. Необычность Z-формы ДНК проявляется в том, что повторяющейся структурной единицей являются две пары нуклеотидов, а не одна, как во всех других формах ДНК. Параметры Z-ДНК приведены в таблице выше.
«Стебель-петля» — элемент вторичной структуры РНК, схематично «Псевдоузел» — элемент вторичной структуры РНК, схематичноМолекулы РНК представляют собой единичные полинуклеотидные цепи. Отдельные участки молекулы РНК могут соединяться и образовывать двойные спирали[5]. По своей структуре спирали РНК похожи на А-форму ДНК. Однако часто спаривание оснований в таких спиралях бывает неполным, а иногда даже и не уотсон-криковским[9]. В результате внутримолекулярного спаривания оснований формируются такие вторичные структуры, как стебель-петля («шпилька») и псевдоузел[10].
Вторичные структуры в мРНК служат для регуляции трансляции. Например, вставка в белки необычных аминокислот, селенометионина и пирролизина, зависит от «шпильки», расположенной в 3′-нетранслируемой области. Псевдоузлы служат для программированного сдвига рамки считывания при трансляции.
В вирусных мРНК сложные вторичные структуры (IRES) направляют трансляцию, независящую от узнавания кэпа и факторов инициации трансляции (см. «Инициация трансляции»).
- ↑ IUPAC
- ↑ 1 2 3 4 Финкельштейн А. В., Птицын О. Б. Вторичные структуры полипептидных цепей // Физика белка. — Москва: КДУ, 2005. — С. 86—95. — ISBN 5-98227-065-2.
- ↑ 1 2 Лекция 2. Структурные уровни белков и нуклеиновых кислот («Основы биологии», Макеев Александр Владиславович, 1996 и 1997)
- ↑ Venkatachalam CM. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units (англ.) // Biopolymers : journal. — 1968. — Vol. 6. — P. 1425—1436. — PMID 5685102.
- ↑ 1 2 Под ред. Е. С. Северина. Структурная организация нуклеиновых кислот // Биохимия : Учебник для вузов. — Москва: ГЭОТАР-МЕД, 2003. — С. 141—149. — ISBN 5-9231-0254-4.
- ↑ WATSON J. D., CRICK F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid (рум.) // Nature. — 1953. — Т. 171. — P. 737—738. — PMID 13054692.
- ↑ 1 2 Зенгер В. Глава 9. Полиморфизм ДНК и структурный консерватизм РНК. Классификация А-, В- и Z-типов двойных спиралей // Принципы структурной организации нуклеиновых кислот. — Москва: Мир, 1987. — С. 240—259.
- ↑ Wang A. H., Quigley G. J., Kolpak F. J., Crawford J. L., van Boom J. H., van der Marel G., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution (англ.) // Nature : journal. — 1979. — Vol. 282. — P. 680—686. — PMID 514347.
- ↑ Зенгер В. Глава 10. Структура РНК // Принципы структурной организации нуклеиновых кислот. — Москва: Мир, 1987. — С. 260—271.
- ↑ Козлов, Н. Н., Кугушев, Е. И., Сабитов, Д. И., Энеев, Т. М. «Компьютерный анализ процессов структурообразования нуклеиновых кислот»
Обсуждение:Белки — Википедия
== Неправда и уточнения =[править код]
«Белки длиной от 2 до нескольких десятков аминокислотных остатков часто называют пептидами, при большей степени полимеризации — белками, хотя это деление весьма условно.»
Это НЕКОРРЕКТНОЕ утверждение.Из выделенной части цитаты следует, что кто то может назвать последовательность из 2-х аминокислот белком — явная путаница понятий «белок» и «пептид». Явно смешаны в кучу понятия белка и пептида, полипептида и олигопептида. Все поставлено с ног на голову. Все белки — пептиды, но не все пептиды — белки! Любая последовательность а/к — пептид! (поэтому, то утверждение ВООБЩЕ не имеет смысла!) То что написано (последовательность до 10-20 а/к) — это вообще то определение олигопептида по Химинциклопедии/ИЮПАК, но нельзя терминологически называть ологопептид белком — эти множества не перекрываются!
Я бы вообще эту фразу убрал, а в самом начале в определении белка взял бы из статьи «Полипептиды», что белок — это полипептид, с условной границей длинной не менее 50-90 и(или) массой не менее 5000-10 000 кДа (там, в «Пептидах», есть 2 ссылки на ИЮПАК, Химинциклопедию, Ленинджера — всего 5 ссылок, где эта граница численно условно определяется авторитетными источниками). Если есть другие точки зрения (например, что кто какие то авторитетные биохимики сознательно называют белком последовательность их 2-х аминокислот), то эту точку зрения можно оставить ТОЛЬКО с указанием ссылки на источник!
Методы количественного анализа белков[править код]
Раскрыто далеко не полностью. Например, такой важный метод, как метод Къельдаля (Кьельдаля), не рассматривается вообще (правда, это — метод определения общего азота и сырого протеина, но именно его можно использовать как универсальный метод, тогда как остальные относятся к растворимым белкам), более того, я вообще не нашёл в Википедии. Как будет время, попробую составить статью, потом можно обсудить возможность введения сюда ссылки vvi 14:29, 20 января 2010 (UTC)
вырожденность аминокислот[править код]
Различные аминокислоты имеют разную степень вырожденности (кодируются от 1 до 6 кодонами) — данная фраза представляется не вполне корректной. Вырожденность — прерогатива генетического кода, аминокислоты к вырожденности отношения не имеют. Как переформулировать не знаю —Sirozha.ru 02:23, 15 марта 2010 (UTC)
- Верно, уточнил. S.J. 02:37, 15 марта 2010 (UTC)
Правлю тут ряд неточностей благодаря конструктивной критики внешних ресурсов, удивляюсь как статья попала в избранные … Впрочем все по мелочам, но очень много .. S.J. 20:11, 15 марта 2010 (UTC)
- Вот таких правок можно сделать действительно очень много, смысла это не меняет. Как и переписывание кусков статьи о генетическом коде в эту. Внешние ресурсы Вас еще не такому научат, продолжайте.—Victoria 20:35, 15 марта 2010 (UTC)
- Ой, ну причем тут это — это всего лишь для красоты, и не это я тут имел введу. Ничего переписано не было, просто если сказали А, то нужно сказать и Б … где этому место — это отдельный вопрос. В статье о генетическом коде этого не было. S.J. 20:46, 15 марта 2010 (UTC)
- Мембранные белки — находятся в мембране, где нет воды, но части их выступают из мембраны в воду. Мембраны создают поверхность клетки, а внутри нее — разные замкнутые объемы (компартмены). Мембраны состоят из жира (липидов) и белков. Особая роль мембранных белков (которые составляют половину веса мембраны) — обеспечить транспорт через нее различных веществ, а также сигналов. Мембрана — это, так сказать «изолятор», а белки (каналы в них) — «проводники». Эти проводники специфичны, каждый из них пропускает через мембрану только определенные молекулы (посредством небольшого изменения конформации белка, то есть размещения атомов) или сигналы от определенных молекул. — в этом абзаце неточностей получилось намноооого больше, чем полезных сведений. Особенно порадовал компартмен.—Sirozha.ru 02:20, 16 марта 2010 (UTC)
- Неточностей тут нету 🙂 это почти слово в слово из учебника Финкельштейн, Птицын, Физика белка, Лекция 12. Поэтому будьте осторожны в своих высказываниях. Вот, что значит критиковать то чего не знаешь — так не нароком можно и общепризнанным научным авторитетам сказать что они ерунду пишут — вот только бы потом стыдно не было бы ? S.J. 03:23, 16 марта 2010 (UTC)
- Стыдно должно быть авторам двенадцатой лекции «пособия» Физика белка, может быть они и признаны научными авторитетами, но в процитированной главе написали чепуху. А на ваше замечание удивляюсь как статья попала в избранные могу лишь заметить, что меня удивляет почему «пособия» по физике белка (после прочтения выдержек из них) и их авторов считают авторитетами. —Sirozha.ru 04:12, 16 марта 2010 (UTC)
- Ежику понятно, что мембранные белки находятся в мембране. Далее получается, что снаружи мембрана плавает в воде, хотя снаружи клетку окружает межклеточное пространство, там конечно намного больше воды, чем в мембране, но все-таки не озеро. Про «разные замкнутые объемы» — компартмены вряд ли бы написал сколько нибудь сведущий в клеточной биологии специалист. Как авторы представляют себе транспорт различных сигналов через мембрану посредством белков? Через GPCR, например? Но там сигнал не транспортируется, а передается. Ионные каналы — другое дело, но в данном случае транспортируется не сигнал, а ионы, сигнальная молекула остается связанной какое то время на поверхности клетки с мембранным белком. Мембрана — это, так сказать «изолятор», а белки (каналы в них) — это, как бы «проводники» это стиль не энциклопедии, а студента, который экзамен провалил. Или физика, который считает, что здорово придумал как ввернуть родной термин в незнакомую науку. Изменение конформации белка в общем является изменением размещения атомов. Или изменением положения атомов друг относительно друга, но принципиален в данном случае совершенно иной момент — ковалентные связи при этом не разрушаются и не образуются. Про атомы физики в данном случае вообще могут спокойно забыть. Вы конечно можете неограниченно цитировать «пособия» общепризнанных авторов, но советую вам выбирать такие учебники, которые подвергались редакторской правке. —Sirozha.ru 04:17, 16 марта 2010 (UTC)
- Там много вкусностей. С.149 :»Сидящие (!!!) на альфа спиралях гидрофобные группы обращены «наружу»…[] Полярные же группы — их немного — обращены внутрь очень узкого канала, по которому идет (!!!, даже без кавычек) протон». Куда идем мы с протонОм? С.148 : «В «жирном» (!!! не гидрофобном, а именно жирном), почти безводном липидном окружении цена (!!!) каждой водородной связи очень высока, что заставляет белковую цепь, уж если она попадает в мембрану (!!! тут я вообще автоагрегирую с образованием нерастворимой суспензии), далее бла-бла-бла. Почем водородные связи? Авторы крайне вольно обращаются с терминологией, складывается ощущение, что все описание структур и процессов служит как прикрытие введения крайне ФГМных физических моделей. Глубокоуважаемые коллеги, относитесь скептичнее к печатному слову. Engineer Gena 10:53, 21 марта 2010 (UTC)
- Неточностей тут нету 🙂 это почти слово в слово из учебника Финкельштейн, Птицын, Физика белка, Лекция 12. Поэтому будьте осторожны в своих высказываниях. Вот, что значит критиковать то чего не знаешь — так не нароком можно и общепризнанным научным авторитетам сказать что они ерунду пишут — вот только бы потом стыдно не было бы ? S.J. 03:23, 16 марта 2010 (UTC)
Предложение добавить информацию в статью[править код]
http://elementy.ru/news/164682 предлагаю добавить для лучшего понимания кодирования кодонов. (20.07.10) — Эта реплика добавлена участником 77.37.151.190 (о • в) 14:09, 20 июля 2010 (UTC)
также есть 21 аминокислота селеноцистеин открыта недавно!
Спираль построена исключительно из одного типа стереоизомеров аминокислот (L) — в разделе про первичную структуру. Так как в белках вообще могут быть только L-аминокислоты, то это уточнение выглядит излишним. Впрочем, если авторы статьи считают, что так лучше — то пусть будет. —Yuriy Kolodin 12:15, 18 декабря 2010 (UTC)
С удивлением обнаружила, что в статье нет ни слова о деградации белков, которая является логическим завершением их жизненного цикла. Недочёт, однако. OpossumK 19:08, 14 июля 2012 (UTC)
Кто может синтезировать протеин[править код]
Добавьте пожалуйста информацию, какие организмы могут получать протеин (аминокислоты) из аммиака (нитратов, мочевины) и источника энергии (углеводов). Например, растения могут так синтезировать протеин, а человек не может и должен получать его с пищей. А грибы могут синтезировать указанным путём? Интересует подробная информация. 87.252.227.84 10:52, 17 августа 2012 (UTC)
Оротидилат-декарбоксилаза (78 миллионов лет и 18 миллисекунд)[править код]
Оротидин-5´-фосфат-декарбоксилаза (оротидилат-декарбоксилаза) — важный фермент, участвующий в биосинтезе пиримидиновых нуклеотидов. Как я понял, именно об этом ферменте идёт речь в указанном источнике. Другие синонимы: OMP decarboxylase, Orotidylic decarboxylase, (Orotate decarboxylase), UMP synthase. Название «оротат-карбоксилаза» неправильно, ИМХО. Shell 20:02, 16 ноября 2012 (UTC)
- Вы, похоже, правы, не считая того, что названия ферментов по-русски пишутся без дефисов, если не содержат аббревиатур и цифр. То есть должно быть оротидин-5′-фосфатдекарбоксилаза (думаю, лучше давать рекомендованное название). Так что правьте смело—OpossumK 21:35, 16 ноября 2012 (UTC)
Неточности и нестыковки[править код]
В разделе «История изучения» написано, что термин протеин был предложен Берцелиусом в 1838, а двумя строчками ниже — что теория Мульдера 1836 года была названа теорией протеина. Доступа к приведённым источникам у меня нет, так что проверить, откуда ноги растут, сама не могу—OpossumK 16:41, 3 января 2013 (UTC)
- В англовики такой вариант Proteins were first described by the Dutch chemist Gerardus Johannes Mulder and named by the Swedish chemist Jöns Jacob Berzelius in 1838. (ссылка сюда, html вариант статьи есть у гугла)—Sirozha.ru 02:12, 2 февраля 2013 (UTC)
- Спасибо, я примерно к такому же варианту пришла, только вот насчёт года сомневалась. В следующую правку добавлю вашу ссылку—OpossumK 05:57, 2 февраля 2013 (UTC)
Нашла несколько неверно указанных дат, причём эти даты легко проверяются. Теперь есть сомнения во всех остальных. Есть ли у кого-нибудь надёжные источники, по которым можно это всё выверить?—OpossumK 20:32, 3 января 2013 (UTC)
Стоит ли считать «протеины» синонимом «белков», если даже в БСЭ говорится:
«Б. делят на простые — протеины, состоящие только из аминокислот, и сложные — протеиды, в состав молекулы которых входят, кроме аминокислот, и другие соединения.»
В таком случае, возможно, стоит убрать слово «протеины» из самой первой строки статьи, и изменить страницу перенаправления протеины? Tookser 06:09, 14 июля 2013 (UTC)
Каталитическая реакция[править код]
Неверно указано количество ферментов — «К 2013 году было описано более 5000 тысяч ферментов[65][66].» либо «тысяч» лишнее, либо «000» Anonimous 02:09, 20 мая 2017 (UTC)
- Исправлено. —Bff (обс.) 21:27, 19 июня 2017 (UTC)
Белки это якобы «линейные полимеры»[править код]
Какие же они «линейные полимеры» если есть ещё и ковалентные связи между двумя остатками цистеина — дисульфидные мостики ? ) Даёшь АИ ! —Pudendatebra (обс.) 08:54, 23 января 2019 (UTC)
БЕЛОК — это… Что такое БЕЛОК?
Белок А — (англ. protein A) это белок, молекулярной массой 40 60 кДа, выделенный с поверхности клеточной стенки золотистого стафилококка (Staphylococcus aureus). Белок А используется в биохимических исследованиях, так как хорошо связывает многие… … Википедия
Белок G — (англ. protein G) это белок, связывающий иммуноглобулины, который экспрессируются в стрептококках групп C и G. Белок G имеет сходства с белком А, но отличается специфичностью. Белок G имеет молекулярную массу 58 кДа (в случае белка… … Википедия
белок — вытаращить арабские белки.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. белок глобулин, гистон, протеиноид, протеин, протеиновое тело, протамин, протеид Словарь русских синонимов … Словарь синонимов
БЕЛОК — 1. БЕЛОК1, белка, муж. (биол. хим.). Важнейшая составная часть организма животных и растений; то же, что альбумин и белковина. 2. БЕЛОК2, белка, муж. 1. Выпуклая непрозрачная оболочка глаза. || только мн. Глаза (прост.). Белки выпучить. Белками… … Толковый словарь Ушакова
БЕЛОК — 1. БЕЛОК1, белка, муж. (биол. хим.). Важнейшая составная часть организма животных и растений; то же, что альбумин и белковина. 2. БЕЛОК2, белка, муж. 1. Выпуклая непрозрачная оболочка глаза. || только мн. Глаза (прост.). Белки выпучить. Белками… … Толковый словарь Ушакова
белок C — Белок, сериновая протеаза, синтезируемая клетками печени; антикоагулянт, является ингибитором факторов Va и VIIIa свертывания крови; частота гетерозигот по дефициту Б.C в популяциях человека достигает 1/200 данная аномалия связана с повышенным… … Справочник технического переводчика
БЕЛОК — БЕЛОК, органическое СОЕДИНЕНИЕ, содержащее множество АМИНОКИСЛОТ, соединенных ковалентными пептидными связями. Молекулы белков состоят из по липептидных цепей. В живых КЛЕТКАХ имеется около 20 различных аминокислот. Из за того, что в каждой… … Научно-технический энциклопедический словарь
белок — БЕЛОК, лка, муж. Высокомолекулярное органическое вещество, обеспечивающее жизнедеятельность животных и растительных организмов. | прил. белковый, ая, ое. Белковые корма (с высоким содержанием белка). II. БЕЛОК, лка, муж. 1. Прозрачная часть яйца … Толковый словарь Ожегова
Белок — Белок, связывающий жирные кислоты Белки, связывающие жирные кислоты (англ. fatty acid binding proteins, FABP; БСЖК) семейство транспортеров жирных кислот и других липофильных веществ, таких как эйкозаноиды и ретиноиды. Как считается, эти… … Википедия
белок — 1. БЕЛОК, лка; м. 1. Прозрачная жидкость, окружающая желток птичьего яйца. / О такой части куриного яйца как пище. Выпить сырой б. Взбитые белки. ◁ Белковый, ая, ое. Б. крем (из яичных белков). 2. БЕЛОК см. 1. Белки. 3. БЕЛОК см. 2. Белки. 4.… … Энциклопедический словарь
Добавить комментарий