Метаболизм жиров
Жиры — это группа природных веществ, присутствующих в клетках каждого растения и животного, особенно в жире наземных животных, морских млекопитающих и рыб, а также в семенах некоторых растений.
Что такое жиры
Жиры представляют собой химические триацилглицерины, то есть сложные эфиры жирных кислот с глицерином трехвалентного спирта. Это могут быть сложные эфиры только одной кислоты или, чаще всего, сложные эфиры двух или трех разных кислот.
Из многих жирных кислот наиболее насыщенными кислотами являются стеариновая и пальмитиновая кислоты, а также ненасыщенные олеиновая, линолевая и линоленовая кислоты. Консистенция жира при температуре окружающей среды зависит от типа отдельных жирных кислот; если жиры содержат больше ненасыщенных кислот, при комнатной температуре они жидкие и называются маслами.
Классификация жиров
Жиры и масла классифицируются по происхождению на животные жиры (молочный жир / масло, свиное сало, говяжий и овечий жир и птичий жир), рыбий жир, растительные масла (подсолнечное, соевое, рапсовое, оливковое, тыквенное, арахисовое, пальмовое) и растительные жиры (кокосовый жир, пальмовый жир, какао-масло).
Из животного сырья жир можно получить в виде готового продукта, просто расплавив и отделив твердый остаток. Переработка растительного масла в сырье намного сложнее и проходит в два этапа: производство неочищенного нерафинированного масла и его переработка. Прессование является очень старым процессом для производства растительных масел, и даже сегодня, без рафинирования, оно используется для некоторого сырья (оливки, тыквенные семечки, в последнее время и семена подсолнечника).
Роль жира в организме
Жиры являются важным компонентом в рационе человека. В современной диете основными источниками жира являются растительные масла, сало (особенно в мясных продуктах), сливочное масло и маргарин. Обильная жирная диета (особенно жир животных, который содержит много холестерина) не нужна, потому что жиры также могут синтезироваться в организме из веществ, полученных в результате расщепления углеводов и белков.
Жировой обмен начинается в кишечнике, где жиры сначала эмульгируются с помощью солей желчных кислот, вырабатываемых в печени.
Благодаря своему составу (много углерода и водорода, мало кислорода) натуральные жиры являются идеальным запасом метаболического топлива. Их энергетическая ценность в два раза выше, чем у углеводов и белков. В организме они хранятся в жировых запасах разных клеток, особенно в поверхностных жировых тканях, которые также выполняют функцию теплоизолятора. Сохраненные жиры используются в качестве энергетического топлива, особенно во время голодания. Печень использует жиры в качестве основного источника энергии при нормальной работе организма, в то время как мозг вообще не может их использовать. Чтобы обеспечить мозг энергией при недостатке глюкозы, жиры превращаются в кетоновые тела в печени.
Организм человека получает энергию из нескольких различных источников, и только один из них обеспечивает ее более чем в 20 раз больше, чем остальные, а именно, окисление жирных кислот.
Пищеварение в двенадцатиперстной кишке и тонкой кишке.
Окисление жирных кислот представляет собой процесс, в котором один триглицерид измельчается до 16-24 остатков пирувата, поскольку на следующей стадии каждая молекула пирувата входит в цикл Кребса, конечный продукт полного цикла состоит из 14 молекул АТФ.
Окисление жиров и доставка энергии
Условия, при которых организм переходит в режим окисления (говоря простым языком, «сжигания») жира для снабжения энергией, уже накопленной или только извлеченной из пищи, определяются концентрацией сахаров в крови, а также количеством гликогена в организме.
Есть несколько источников энергии, которые способны заряжать организм энергией, и только один источник, который их подключает. Реальная энергия для физического действия производится от разрушения макроэргических связей в молекуле аденозинтрифосфата (АТФ), которая является единственным источником чистой химической энергии, используемой человеческим организмом.
Для синтеза АТФ нужна энергия, которая впоследствии будет потребляться организмом, но сначала нужно откуда-то ее получить. Такими источниками являются жиры, белки, углеводы, нуклеиновые кислоты.
В нормальном состоянии (в состоянии покоя) клетка работает с несколькими видами топлива, чтобы обеспечить свои потребности в энергии. В первые 10 секунд при физическом действии используется количество АТФ, хранящегося в клетке, следующие почти 25 секунд задействуется креатинфосфат.
Если нагрузка продолжается, и топливо заканчивается, тогда приходит следующее — третье топливо — гликоген, сохраненный в ячейке для энергии. Четвертый источник — жир, пятый и шестой — аминокислоты и нуклеиновые кислоты.
При активной деятельности и после того, как запасы углеводов истощаются, нуждающиеся в энергии органы начинают посылать сигналы в ЦНС, а затем в печень, которая начинает метаболизировать собственный гликоген для поддержания уровня глюкозы в крови. Когда определенный процент сахара в крови истощается, механизмы жирового катаболизма доставляют почти в 4 раза больше энергии по сравнению с АК (аминокислоты) и НК (нуклеиновые кислоты).
Это суть жирового обмена. Чтобы высвободить энергию, жиры должны транспортироваться в определенную часть клетки. В клетке существует несколько механизмов окисления жирных кислот — альфа, бета и омега, расположенных в нескольких ее частях. Барьером для доставки энергии является преодоление мембран клеточного энергетического центра (митохондрии). Будут ли они поступать напрямую или подвергаться обработке, зависит от длины углеродной цепи жирных кислот.
Органические вещества. Липиды Липиды — нерастворимые в воде органические вещества, в состав которых входят части молекул глицерина и трех жирных кислот. К ним относятся жиры, воски, фосфолипиды и различные жироподобные вещества. Общее содержание липидов в клетке колеблется в пределах 5 — 15% от массы сухого вещества. В клетках подкожной жировой клетчатки их количество возрастает до 90%.
Нейтральные жиры (триглицериды) представляют собой соединения высокомолекулярных жирных кислот и трёхатомного спирта глицерина. Они являются главной составляющей животных жиров и растительных масел, присутствуют во всех животных и растительных тканях. Функции липидов. Биологическая роль липидов многообразна. Липиды входят в состав клеточной мембраны, влияют на проницаемость клеток и активность ферментов, участвуют в передаче нервных импульсов, выполняют энергетическую функцию и другие.
|
Календарь
СтатистикаОнлайн всего: 3 Гостей: 3 Пользователей: 0 |
Метаболизм жиров (липидный обмен) в организме человека: этапы и биохимия

Мы продолжаем рассматривать тему обменных процессов. Пора перейти к более тонкой настройке питания атлета. Понимание всех нюансов метаболизма – ключ к спортивным достижениям. Тонкая настройка позволит вам отойти от классических диетических формул и подстроить питание индивидуально под сосбвенные потребности, достигая максимально быстрых и стойких результатов в тренировках и соревнованиях. Итак, изучим самый спорный аспект современной диетологии – метаболизм жиров.
Общие сведения
Научный факт: жиры усваиваются и расщепляются в нашем организме весьма избирательно. Так, в пищеварительном тракте человека просто нет ферментов, способных переварить транс-жиры. Инфильтрат печени просто стремится вывести их из организма кратчайшим путем. Пожалуй, каждый знает, что, если съесть много жирной пищи, это вызывает тошноту.
Постоянный избыток жиров ведет к таким последствиям, как:
- диарея;
- несварение желудка;
- панкреатит;
- высыпания на лице;
- апатия, слабость и усталость;
- так называемое «жировое похмелье».


С другой стороны, баланс жирных кислот в организме крайне важен для достижения спортивных результатов — в частности в плане повышения выносливости и силы. В процессе метаболизма липидов происходит регулирование всех систем организма, включая гормональные и генетические.
Рассмотрим подробнее, какие жиры полезны для нашего организма, и как их употреблять, чтобы они помогали достигать желаемого результата.
Виды жиров
Основные виды жирных кислот, поступающие в наш организм:
- простые;
- сложные;
- произвольные.
По другой классификации жиры делятся на мононенасыщенные и полиненасыщенные (например, тут подробно об омега-3) жирные кислоты. Это полезные для человека жиры. Есть ещё насыщенные жирные кислоты, а также транс-жиры: это вредные соединения, которые препятствуют усвоению незаменимых жирных кислот, затрудняют транспорт аминокислот, стимулируют катаболические процессы. Другими словами, такие жиры не нужны ни спортсменам, ни обычным людям.


Простые
Для начала рассмотрим самые опасные но, при этом, – самые часто встречающиеся жиры, которые попадают в наш организм – это простые жирные кислоты.
В чем их особенность: они распадаются под воздействием любой внешней кислоты, включая желудочный сок, на этиловый спирт и ненасыщенные жирные кислоты.
Кроме того, именно эти жиры становятся источником дешевой энергии в организме. Они образуются как результат превращения углеводов в печени. Этот процесс развивается по двум направлениям — либо в сторону синтезирования гликогена, либо в сторону нарастания жировой ткани. Такая ткань практически целиком состоят из окисленной глюкозы, чтобы в критической ситуации организм мог быстро синтезировать из неё энергию.
Простые жиры наиболее опасны для спортсмена:
- Простая структура жиров практически не нагружает ЖКТ и гормональную систему. В результате человек с легкостью получает избыточную нагрузку по калорийности, что в приводит к набору лишнего веса.
- При их распаде выделяется отравляющий организм спирт, который с трудом метаболизируется и ведет к ухудшению общего самочувствия.
- Они транспортируются без помощи дополнительных транспортировочных белков, а значит, могут прилипать к стенкам сосудов, что чревато образованием холестериновых бляшек.
Подробнее о продуктах, которые метаболизириуются в простые жиры, читайте в разделе Таблица продуктов.
Сложные
Сложные жиры животного происхождения при правильном питании входят в составы мышечной ткани. В отличие от своих предшественников, это многомолекулярные соединения.
Перечислим основные особенности сложных жиров в плане влияния на организм спортсмена:
- Сложные жиры практически не метаболизируются без помощи свободных транспортировочных белков.
- При правильном соблюдении жирового баланса в организме сложные жиры метаболизируются с выделением полезного холестерина.
- Они практически не откладываются в виде холестериновых бляшек на стенках сосудов.
- Со сложными жирами невозможно получить переизбыток калорийности — если сложные жиры метаболизируются в организме без открытия инсулином транспортировочного депо, которое обуславливает понижение глюкозы в крови.
- Сложные жиры нагружают клетки печени, что может привести к дисбалансу кишечника и к дисбактериозу.
- Процесс расщепления сложных жиров приводит к увеличению кислотности, что негативно сказывается на общем состоянии ЖКТ и чревато развитием гастрита и язвенной болезни.
В то же время жирные кислоты многомолекулярной структуры содержат радикалы, связанные липидными связями, а значит, они могут денатурировать до состояния свободных радикалов под воздействием температуры. В умеренном количестве сложные жиры полезны для атлета, но не стоит подвергать их термической обработке. В этом случае они метаболизируются в простые жиры с выделением огромного количества свободных радикалов (потенциальных канцерогенов).
Произвольные
Произвольные жиры – это жиры с гибридной структурой. Для атлета это наиболее полезные жиры.
В большинстве случаев организм способен самостоятельно превращать сложные жиры в произвольные. Однако в процессе липидного изменения формулы выделяются спирты и свободные радикалы.
Употребление произвольных жиров:
- снижает вероятность образования свободных радикалов;
- уменьшает вероятность появления холестериновых бляшек;
- положительно влияет на синтез полезных гормонов;
- практически не нагружает пищеварительную систему;
- не ведет к переизбытку калорийности;
- не вызывают притока дополнительной кислоты.
Несмотря на множество полезных свойств, полиненасыщенные кислоты (по сути это и есть произвольные жиры) легко метаболизируются в простые жиры, а сложные структуры, имеющие недостаток молекул – легко метаболизируются в свободные радикалы, получая завершенную структуру из молекул глюкозы.
Что нужно знать спортсмену?
А теперь перейдем к тому, что из всего курса биохимии нужно знать атлету об обмене липидов в организме:
Пункт 1. Классическое питание, не приспособленное под спортивные нужды, содержит множество простых молекул жирных кислот. Это плохо. Вывод: радикально уменьшать потребление жирных кислот и перестать жарить на масле.
Пункт 2. Под воздействием термической обработки полиненасыщенные кислоты распадаются до простых жиров. Вывод: заменить жареную пищу на печеную. Основным источником жиров должны стать растительные масла — заправляйте ими салаты.
Пункт 3. Не употребляйте жирные кислоты вместе с углеводами. Под воздействием инсулина жиры практически без воздействия транспортных белков в своей завершенной структуре попадают в липидное депо. В дальнейшем даже при жиросжигательных процессах они будут выделять этиловый спирт, а это — дополнительный удар по метаболизму.
А теперь о пользе жиров:
- Жиры нужно употреблять обязательно, так как они смазывают суставы и связки.
- В процессе обмена жиров происходит синтез основных гормонов.
- Для создания положительного анаболического фона нужно поддерживать в организме баланс полиненасыщенных омега 3, омега 6 и омега 9 жиров.
Для достижения правильного баланса нужно ограничить общее потребление калорий из жиров до 20% по отношению к общему плану питания. При этом важно принимать их в соединении с белковыми продуктами, а не с углеводными. В этом случае транспортировочные аминокислоты, которые будут синтезироваться в кислотной среде желудочного сока, смогут практически сразу метаболизировать излишек жиров, выводя его из кровеносной системы и переваривая до конечного продукта жизнедеятельности организма.


Таблица продуктов
Продукт | Омега-3 | Омега-6 | Омега- 3 : Омега-6 |
Шпинат (в готовом виде) | — | 0.1 | Остаточные моменты, меньше милиграмма |
Шпинат | — | 0.1 | Остаточные моменты, меньше милиграмма |
Форель свежая | 1.058 | 0.114 | 1 : 0.11 |
Устрицы | 0.840 | 0.041 | 1 : 0.04 |
Тунец свежий | 0.144 — 1.554 | 0.010 — 0.058 | 1 : 0.005 – 1 : 0.40 |
Треска тихоокеанская | 0.111 | 0.008 | 1 : 0.04 |
Скумбрия тихоокеанская свежая | 1.514 | 0.115 | 1 : 0.08 |
Скумбрия атлантическая свежая | 1.580 | 0.1111 | 1 : 0. 08 |
Сельдь тихоокеанская свежая | 1.418 | 0.1111 | 1 : 0.08 |
Свекольная ботва. припущенная | — | Остаточные моменты, меньше милиграмма | Остаточные моменты, меньше милиграмма |
Сардины атлантические | 1.480 | 0.110 | 1 : 0.08 |
Рыба-меч | 0.815 | 0.040 | 1 : 0.04 |
Рапсовое жидкий жир в виде масла | 14.504 | 11.148 | 1 : 1.8 |
Пальмовое жидкий жир в виде масла | 11.100 | 0.100 | 1 : 45 |
Палтус свежий | 0.5511 | 0.048 | 1 : 0.05 |
Оливковое жидкий жир в виде масла | 11.854 | 0.851 | 1 : 14 |
Атлантический угорь свежий | 0.554 | 0.1115 | 1 : 0.40 |
Атлантический гребешок | 0.4115 | 0.004 | 1 : 0.01 |
Морские моллюски | 0.4115 | 0.041 | 1 : 0.08 |
Жидкий жир в виде масла макадамии | 1.400 | 0 | Нет Омега-3 |
Жидкий жир в виде масла льняного семени | 11.801 | 54.400 | 1 : 0.1 |
Жидкий жир в виде масла лесного ореха | 10.101 | 0 | Нет Омега-3 |
Жидкий жир в виде масла авокадо | 11.541 | 0.1158 | 1 : 14 |
Лосось консервированный | 1.414 | 0.151 | 1 : 0.11 |
Лосось атлантический. выращенный на ферме | 1.505 | 0.1181 | 1 : 0.411 |
Лосось атлантический атлантический | 1.585 | 0.181 | 1 : 0.05 |
Листовые элементы репы. припущенные | — | Остаточные моменты, меньше милиграмма | Остаточные моменты, меньше милиграмма |
Листовые элементы одуванчика. припущенные | — | 0.1 | Остаточные моменты, меньше милиграмма |
Листовые элементы мангольда в тушёном виде | — | 0.0 | Остаточные моменты, меньше милиграмма |
Листовые элементы красного салата в свежем виде | — | Остаточные моменты, меньше милиграмма | Остаточные моменты, меньше милиграмма |
Листовые элементы желтого салата в свежем виде | — | Остаточные моменты, меньше милиграмма | Остаточные моменты, меньше милиграмма |
Листовые элементы желтого салата в свежем виде | — | Остаточные моменты, меньше милиграмма | Остаточные моменты, меньше милиграмма |
Листовая капуста коллард. тушеная | — | 0.1 | 0.1 |
Кубанское подсолнечное жидкий жир в виде масла (содержание олеиновой кислоты 80% и выше) | 4.505 | 0.1111 | 1 : 111 |
Креветки | 0.501 | 0.018 | 1 : 0.05 |
Кокосовое жидкий жир в виде масла | 1.800 | 0 | Нет Омега-3 |
Кейл. припущенный | — | 0.1 | 0.1 |
Камбала | 0.554 | 0.008 | 1 : 0.1 |
Какао жидкий жир в виде масла | 1.800 | 0.100 | 1 : 18 |
Икра чёрная и красная | 5.8811 | 0.081 | 1 : 0.01 |
Горчичные листовые элементы. припущенные | — | Остаточные моменты, меньше милиграмма | Остаточные моменты, меньше милиграмма |
Бостонский салат в свежем виде | — | Остаточные моменты, меньше милиграмма | Остаточные моменты, меньше милиграмма |
Итог
Итак, рекомендация всех времён и народов «есть меньше жирного» верна лишь отчасти. Некоторые жирные кислоты просто незаменимы и должны обязательно входить в рацион спортсмена. Чтобы правильно понять, как атлету употреблять жиры, приведём такую историю:
Оцените материалМолодой атлет подходит к тренеру и спрашивает: как правильно есть жиры? Тренер отвечает: не ешь жиры. После этого, атлет понимает, что жиры вредны для организма и учится планировать свое питание без липидов. Затем он находит лазейки, при которых использование липидов оправдано. Он учится составлять идеальный план питания с вариативными жирами. И когда он сам становится тренером, а к нему подходит молодой атлет и спрашивает, как правильно есть жиры, он тоже отвечает: не ешь жиры.

Эксперт проекта. диагностика, лечение, первичная, вторичная профилактика заболеваний почек, суставов, сердечно-сосудистой системы; дифференциальная диагностика заболеваний различных органов и систем; рекомендации по диетическому питанию, физическим нагрузкам, лечебной физкультуре, подбор индивидуальной схемы питания.
Редакция Cross.Expert
Метаболическая вода — Справочник химика 21
В здоровом организме взрослого человека наблюдается состояние водного равновесия или водного баланса. Оно заключается в том, что количество воды, потребляемое человеком, равно количеству воды, выводимой из организма. Водный обмен является важной составной частью общего обмена веществ живых организмов, в том числе и человека. Водный обмен включает процессы всасывания воды, которая поступает в желудок при питье и с пищевыми продуктами, распределение ее в организме, выделения через почки, мочевыводящие пути, легкие, кожу и кишечник. Следует отметить, что вода также образуется в организме вследствие окисления жиров, углеводов и белков, принятых с пищей. Такую воду называют метаболической. Слово метаболизм происходит от греческого, что означает перемена, превращение. В медицине и биологической науке метаболизмом называют процессы превращения веществ и энергии, лежащие в основе жизнедеятельности организмов. Белки, жиры и углеводы окисляются в организме с образованием воды НгО и углекислого газа (диоксида углерода) СОг. При окислении 100 г жиров образуется 107 г воды, а при окислении 100 г углеводов — 55,5 г воды. Некоторые организмы обходятся лишь метаболической водой и не потребляют ее извне. Примером является ковровая моль. Не нуждаются в воде в природных условиях тушканчики, которые водятся в Европе и Азии, и американская кенгуровая крыса. Многие знают, что в условиях исключительно жаркого и сухого климата верблюд обладает феноменальной способностью долгое время обходиться без пищи и воды. Например, при массе 450 кг за восьмидневный переход по пустыне верблюд может потерять 100 кг в массе, а потом восстановить их без последствий для организма. Установлено, что его организм использует воду, содержащуюся в жидкостях тканей и связок, а не крови, как это происхо- [c.8]Обитателям пустыни, например, из-за дефицита воды часто приходится очень осмотрительно выбирать метаболическое топливо, с тем чтобы обеспечить максимум не выхода энергии, а образования метаболической воды. При окислении жира [c.79]
Кожа…………………………….. 500 Метаболическая вода……………………………… 400 [c.449]
Метаболическая вода — вода, образующаяся в организме в результате метаболических превращений. [c.553]
ОБРАЗОВАНИЕ МЕТАБОЛИЧЕСКОЙ ВОДЫ ПРИ ОКИСЛЕНИИ РАЗЛИЧНЫХ ПИЩЕВЫХ ВЕЩЕСТВ [c.80]
Основную массу элементов, из которых построены пищевые вещества, а также и тело человека, составляют углерод, водород, кислород и азот. Эти же элементы входят в состав главных конечных продуктов обмена веществ — СО , Н О и мочевины Н2К—СО—КН . В форме Н О выводится водород органических веществ, причем организм выделяет воды больше, чем потребляет (см. табл. 6.1) примерно 400 г воды образуется за сутки в организме из водорода органических веществ и кислорода вдыхаемого воздуха (метаболическая вода). В форме СО выводятся углерод и кислород органических веществ, а в форме мочевины — азот. [c.179]
Общий баланс воды в системе определяется следующими процессами образованием вод бактериями, разложением воды в электролизере и выделением метаболической воды человеком. Количество воды, образуемой бактериями при синтезе 1 г биомассы, можно оценить исходя из данных о скорости поглощения водорода и элементарного состава биомассы. [c.120]
Диоксид углерода (СО2) и водяные пары диффундируют с влажной поверхности легочных альвеол. Легкие у млекопитающих — единственный орган, осуществляющий вьщеление СО2. Часть воды, испаряющейся в легких, представляет собой метаболическую воду, т. е. продукт клеточного дыхания, который можно было бы считать экскретом, но истинное происхождение этой воды не так уж важно ввиду большого общего объема воды, содержащейся в организме. [c.7]
Пища — основной источник воды для организма. Потребность в воде взрослого человека, по некоторым оценкам, составляет около 35 г в день на 1 кг массы тела (т. е. для человека массой 70 кг необходимо приблизительно 2 кг воды). Но как и любая потребность человека в биологически активных веществах, потребность в воде зависит от многих факторов возраста, состояния организма (нормального, патологического), места жительства, погодных условий, физических нагрузок и др. Кроме того, в процессе окисления жиров, белков и углеводов выделяется так называемая метаболическая вода. При окислении 100 г углеводов образуется приблизительно 55 мл Н2О, 100 г белков — 41 мл Н2О, 100 г жира — 107 мл Н2О. [c.449]
Почти массы тела человека приходится на воду. Суточное потребление воды составляет около 2 л, к этому добавляется 0,3-0,4 л метаболической воды, образующейся при тканевом дыхании. При отсутствии питья человек погибает через несколько суток в результате дегидратации тканей, когда количество воды в организме уменьшается примерно на 12 %. [c.387]
В отличие от влияния температуры влияние влажности регистрировать не просто. Если имеются доступные источники воды, то насекомые легко переносят сухость воздуха. При этом гигрофилам, обитающим во влажных местах, противопоставляют менее требовательных мезофилов и ксерофилов, приспособленных к постоянному дефициту влажности. Последние нередко вообще не пьют и, обитая в сухих субстратах, довольствуются метаболической водой. [c.89]
В организме человека митохондриальная дыхательная цепь образует 300-400 мл воды за сутки (метаболическая вода). Некоторые жуки-чернотелки, обитающие в абсолютно сухих пустынях, получают воду только в результате тканевого дыхания, питаясь сухими пылевидными остатками растений, которые приносит ветер. [c.231]
— окисление жирных кислот — Биохимия
Окисление жирных кислот (β-окисление)
Для преобразования энергии, заключенной в жирных кислотах, в энергию связей АТФ существует метаболический путь окисления жирных кислот до СО2 и воды, тесно связанный с циклом трикарбоновых кислот и дыхательной цепью. Этот путь называется β-окисление, т.к. происходит окисление 3-го углеродного атома жирной кислоты (β-положение) в карбоксильную группу, одновременно от кислоты отщепляется ацетильная группа, включающая С1 и С2 исходной жирной кислоты.
Элементарная схема β-окисления
Реакции β-окисления происходят в митохондриях большинства клеток организма (кроме нервных клеток). Для окисления используются жирные кислоты, поступающие в цитозоль из крови или появляющиеся при липолизе собственных внутриклеточных ТАГ. Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:
Пальмитоил-SКоА + 7ФАД + 7НАД+ + 7Н2O + 7HS-KoA → 8Ацетил-SКоА + 7ФАДН2 + 7НАДН
Этапы окисления жирных кислот
1. Прежде, чем проникнуть в матрикс митохондрий и окислиться, жирная кислота должна активироваться в цитозоле. Это осуществляется присоединением к ней коэнзима А с образованием ацил-SКоА. Ацил-SКоА является высокоэнергетическим соединением. Необратимость реакции достигается гидролизом дифосфата на две молекулы фосфорной кислоты.
Ацил-SКоА-синтетазы находятся в эндоплазматическом ретикулуме, на наружной мембране митохондрий и внутри них. Существует широкий ряд синтетаз, специфичных к разным жирным кислотам.
Реакция активации жирной кислоты
2. Ацил-SКоА не способен проходить через митохондриальную мембрану, поэтому существует способ переноса жирной кислоты в комплексе с витаминоподобным веществом карнитином (витамин В11). На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I.
Карнитин-зависимый транспорт жирных кислот в митохондрию
Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы. Во внутриутробном периоде и в первые годы жизни значение карнитина для организма чрезвычайно велико. Энергообеспечение нервной системы детского организма и, в частности, головного мозга осуществляется за счет двух параллельных процессов: карнитин-зависимого окисления жирных кислот и аэробного окисления глюкозы. Карнитин необходим для роста головного и спинного мозга, для взаимодействия всех отделов нервной системы, ответственных за движение и взаимодействие мышц. Существуют исследования, связывающие с недостатком карнитина детский церебральный паралич и феномен «смерти в колыбели«.
Дети раннего возраста, недоношенные и дети с малой массой особенно чувствительны к недостаточности карнитина. Эндогенные запасы у них быстро истощаются при различных стрессовых ситуациях (инфекционные заболевания, желудочно-кишечные расстройства, нарушения вскармливания). Биосинтез карнитина недостаточен, а поступление с обычными пищевыми продуктами неспособно поддержать достаточный уровень в крови и тканях.
3. После связывания с карнитином жирная кислота переносится через внутреннюю митохондриальную мембрану транслоказой. На внутренней стороне этой мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-SКоА, который вступает на путь β-окисления.
4. Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА. К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.
Последовательность реакций β-окисления жирных кислот
Расчет энергетического баланса β-окисления
Ранее при расчете эффективности окисления коэффициент P/O для НАДH принимался равным 3,0, для ФАДH2 – 2,0.
По современным данным значение коэффициента P/O для НАДH соответствует 2,5, для ФАДH2 – 1,5.
При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать:
- количество образуемого ацетил-SКоА – определяется обычным делением числа атомов углерода в жирной кислоте на 2.
- число циклов β-окисления. Число циклов β-окисления легко определить исходя из представления о жирной кислоте как о цепочке двухуглеродных звеньев. Число разрывов между звеньями соответствует числу циклов β-окисления. Эту же величину можно подсчитать по формуле (n/2 -1), где n – число атомов углерода в кислоте.
- число двойных связей в жирной кислоте. В первой реакции β-окисления происходит образование двойной связи при участии ФАД. Если двойная связь в жирной кислоте уже имеется, то необходимость в этой реакции отпадает и ФАДН2 не образуется. Количество недополученных ФАДН2 соответствует числу двойных связей. Остальные реакции цикла идут без изменений.
- количество энергии АТФ, потраченной на активацию (всегда соответствует двум макроэргическим связям).
Пример. Окисление пальмитиновой кислоты
- Так как имеется 16 атомов углерода, то при β-окислении образуется 8 молекул ацетил-SКоА. Последний поступает в ЦТК, при его окислении в одном обороте цикла образуется 3 молекулы НАДН (7,5 АТФ), 1 молекула ФАДН2 (1,5 АТФ) и 1 молекула ГТФ, что эквивалентно 10 молекулам АТФ. Итак, 8 молекул ацетил-SКоА обеспечат образование 8×10=80 молекул АТФ.
- Для пальмитиновой кислоты число циклов β-окисления равно 7. В каждом цикле образуется 1 молекула ФАДН2 (1,5 АТФ) и 1 молекула НАДН (2,5 АТФ). Поступая в дыхательную цепь, в сумме они «дадут» 4 молекулы АТФ. Таким образом, в 7 циклах образуется 7×4=28 молекул АТФ.
- Двойных связей в пальмитиновой кислоте нет.
- На активацию жирной кислоты идет 1 молекула АТФ, которая, однако, гидролизуется до АМФ, то есть тратятся 2 макроэргические связи или две АТФ.
- Таким образом, суммируя, получаем 80+28-2 =106 молекул АТФ образуется при окислении пальмитиновой кислоты.
Метаболизм пищевых жиров глазами дилетанта : znatok_ne — LiveJournal
На написание этого материала (ну и попутно изучение вопроса более глубоко на своем любительском уровне), меня сподвигло, то обстоятельство, что мифы о запрете смешивания в одном приеме пищи «жиров-белков-углеводов» (равно как и сказки про «жир+быстрый углевод»), до сих пор активно живут и здравствуют в умах диетящихся.
И как правило, мало кого утешают аргументы, из разряда, что,
во-первых, жиры снижают гликемический индекс продукта;
во-вторых, жиры замедляют усвоение нутриентов;
в-третьих, жиры поступают в кровь значительно медленнее остальных нутриентов (речь про белок и углеводы), часа через 3-4),
(в-четвертых) т.е. по сути, употребляя углеводы со следующим приемом пищи (который как раз часа через 3-4 обычно бывает), в работу включаются жиры съеденные с прошлым приемом;
в-пятых, жиры так и так, почти все пойдут в запасники тела, это естественный процесс .. и т.п. и т.д.; и что разумнее питаться полноценно и с каждым приемом пищи, стараться употреблять все 3 нутриента (белок+углевод+жир).
И предлагаемая мною упрощенная схема (очень упрощенная) метаболизма пищевых липидов (жиров), вроде как изначально осознается внимающими, но быстро забывается:
[Суть упрощенной схемы метаболизма пищевых липидов:]Суть упрощенной схемы метаболизма пищевых липидов:
Жиры, поступающие с пищей, при благоприятных обстоятельствах становится доступны для использования другими тканями, где то часа через три, после попадания в организм:
— сначала жиры превращаются в хиломикроны —>
—> которые отправляются в лимфатические сосуды —>
—> после чего они попадают в кровь (минуя печень) —>
—> затем где то через 3 часа эти хиломикроны попадут в жировые клетки —>
—> в жировых клетках благодаря ферменту липопротеинлипазе (ЛПЛ), жирные кислоты высвобождаются из хиломикрона —>
—> и только потом эти жирные кислоты (в зависимости от состояния метаболизма) могут быть либо запасены в жировой клетке, либо попасть в кровоток и быть использованы другими тканями, например мышцами или печенью.
Но в любом случае, большая часть диетических жиров (кроме МСТи ДАГ масел), все равно накапливаются в жировых клетках, откуда уже потом тело способно брать необходимый для своих нужд материал, в случае его недостатка в свободном доступе в текущий момент.
Поэтому я решил, проштудировать учебники по физиологии и биохимии (источники как обычно в конце), и попытаться как то сжато, но последовательно более подробно рассмотреть происходящие процессы с момента поглощения пищи до момента депонирования жирных кислот в жировой клетке. Пришлось покопаться, потому, что где то какие то процессы рассмотрены неполно, где то сделан акцент на чем то одном, ну в общем не суть.
Предупреждаю сразу, как бы я не пытался сократить и упростить изложение протекающих процессов, но объяснить это в трех словах (не упустив важных деталей), на мой взгляд, достаточно проблематично. Поэтому текст все же, наверное не будет слишком простым, но я буду пытаться пояснять простыми словами сложные термины, а также наполню текст поясняющими картинками и парочкой видео в конце.
Ну в общем, букв снова будет много, и да, рассматривается схема работы в теле здорового человека, про различного рода заболевания и отклонения я говорить не буду. По крайней мере, не в этот раз.
Итак начнем …
Среднее потребление липидов (масло животное и растительное, маргарин, молоко, мясо, сосиски, яйца, орехи и т, д.) в питании человека составляет примерно 60 -100 г в сутки, но существуют большие индивидуальные вариации (10 — 250 гр в сутки). Большинство жиров в пище (90% ) — это нейтральные жиры, или три-ацилглицериды (триглицериды). Остальные жиры — это фосфолипиды, эфиры холестерина и жирорастворимые витамины (витамин А, О, Е и К), но на них подробно я останавливаться не буду.
Жиры — нерастворимые в воде соединения, таким образом для их переваривания в водной среде желудочно-кишечного тракта и для последующего всасывания и транспорта в плазму крови требуются специальные механизмы.
Более 95% липидов обычно всасываются в тонком кишечнике.
Как правило, процессу всасывания жиров, предшествуют две последовательные стадии:
— эмульгирование (размельчение (образование частиц, размеры которых не превышают 0,5 мкм, что соответствует расстоянию между соседними микроворсинками энтероцитов; энтероциты -клетки эпителиальной ткани кишечника) и смешивание жира с водой) в тонком кишечнике с помощью специальных веществ — эмульгаторов (или детергентов). Эмульгирование, ускоряет гидролиз жира панкреатической липазой. В организме человека эмульгаторами являются желчные кислоты, которые синтезируются в печени из холестерола, и секретируются в жёлчный пузырь;
— гидролизация (расщепление на глицерин и жирные кислоты и моноацилглицерины) под действием ферментов (панкреатической липазы и прочих липаз).
Некоторые пищевые жиры поступают в организм уже в эмульгированной форме, например молочный жир. Также небольшая часть жиров может быть гидролизована под действием «липазы языка» (язычная липаза), которая вырабатывается клетками слизистой оболочки задней части языка. Действие этого фермента проявляется только в желудке. Но по большому счету, в желудке взрослого человека язычная липаза неактивна (из-за разницы в pH), реально жиры перевариваются язычной липазой только у младенцев. Т.о. у взрослых людей переваривание жира идет только в кишечнике по схеме: «выделение желчи —> эмульгирование жира —> действие панкреатической липазы».
При поступлении пищи в желудок, а затем в кишечник клетки слизистой оболочки тонкого кишечника начинают секретировать (производить) в кровь пептидный гормон холецистокинин (панкреозимин). Этот гормон действует на жёлчный пузырь (стимулируя его сокращение) и на экзокринные клетки поджелудочной железы (стимулируя секрецию пищеварительных ферментов — различные виды липаз, в том числе панкреатической липазы. В результате чего жёлчные кислоты (детергенты/ эмульгаторы) в составе жёлчи изливаются в просвет двенадцатиперстной кишки. Под действием желчных кислот, крупные капли жира распадаются на множество мелких, т.е. происходит эмульгирование жира. Эмульгированию способствует и перистальтика кишечника.
Далее большая часть эмульгированных жиров гидролизируется под действием панкреатической липазы, а меньшая часть гидролизируется кишечной липазой. Количество липазы, поступающей с панкреатическим соком, так велико, что к тому моменту, когда жир достигает середины двенадцатиперстной кишки, 80% его оказывается гидролизованным. В связи с этим нарушение переваривания жиров, связанное с недостаточностью липазы, не выявляется вплоть до полного прекращения деятельности поджелудочной железы или сильного ее разрушения.
Помимо липазы, панктреатический сок содержит также фосфолипазу. Фосфолипаза участвует в переваривании фосфолипидов. Также фосфолипазы содержащиеся в кишечном соке расщепляют лизофосфатиды (входят в состав фосфолипидов) до составных компонентов: глицерин, фосфорная кислота, холин и КСООН. Под действием фосфолипаз А1, А2, С, Д образуются: глицерин, жирные кислоты, фосфорная кислота, спирты (серин, холин, этаноламин), сфингозин. Также панкреатический сок содержит фермент холестеролэстеразу, расщепляющую эфиры холестерина.Хорошо растворимые (глицерин, фосфорная кислота, холин, инозит, серин, сфингозин и др,) продукты легко всасываются из кишечника в кровоток путем диффузии. Продукты гидролиза нерастворимые в воде (жирные кислоты с длинным углеводородным радикалом, 2-моноацилглицеролы, холестерол, лизофосфатиды, фосфолипиды, а также соли жёлчных кислот и пр.) в составе смешанных мицелл (имеющих гидрофобную сердцевину), способны всасываться через клетки (энтероциты) эпителиальной ткани кишечника.
*шарж мицеллы
Но прежде чем попасть внутрь энтероцита, компоненты смешанных мицелл, должны преодолеть три барьера:1) неперемешивающийся водный слой, прилежа¬щий к поверхности клетки, основное препят-ствие для жирных кислот с длинными цепями и моноглицеридов и для выполнения мицел¬лами их функций;
2) слой слизи, покрывающий щеточную каемку энтероцита; при толщине 2-4 мкм этот слой также препятствует переносу компонентов мицелл;
3) липидную мембрану энтероцита. Сами мицеллы в клетку не проникают, но их липидные компоненты растворяются в плазматической мем¬бране и быстро проникают в клетку (диффундируют по концентрационному градиенту). Остаточное вещество мицелл может затем возвратиться в просвет и включить новые липидные компоненты.
Жирные кислоты с короткими и средними цепями (в их числе те самые МСТ и ДАГ жирные кислоты) и содержащие их липиды довольно хорошо растворимы в воде и могут диффундировать (проникать) к поверхности энтероцитов не встраиваясь в мицеллы. Эти жирные кислоты из клеток слизистой оболочки тонкого кишечника попадают в кровь, связываются с белком альбумином и транспортируются в печень, как правило, не поступая в адипоциты.
Продукты гидролиза (моноглицериды и жирные кислоты) поступившие в итоге в энтероцит, ресинтизируются (преобразуются) в эндоплазматическом ретикулуме (внутриклеточный органоид, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев, в которой происходит синтез и транспорт липидов и стероидов, а также трансляция и транспорт белков и др.процессы) в жиры, наиболее близкие по составу к жирам организма, триацилглицеролы (триглицериды).
Далее триглицериды, объединяются в большие образования – глобулы ( ХИЛОМИКРОНЫ), поверхность которых покрывается специальной оболоч¬кой из бета-липопротеинов, включающей в себя холестерол и фосфолипиды в сочетании со специфическими гликопротеинами, синтезированными в аппарате Гольджи (состав хиломикронов, приблизительно следующий: 90% -триглицери¬ды, 7% -фосфолипиды, 2 % -холестерол и 1 % — белок).Размеры хиломикрона настолько велики, что он не может пройти через поры, имеющиеся в стенках кровеносных капилляров, поэтому хиломикроны поступают в лимфу, а через нее уже попадают в большой круг кровообращения, минуя печень. В кровеносном русле к хиломикронам присоединяется (происходит перенос) ещё два апобелка (белки оболочки называются апобелками): «С» (АпоС) и «Е» (АпоЕ).
Первым органом, через который должны пройти хиломикроны, являются легкие. При повышении концентрации хиломикронов в крови, часть их задерживается в легких (липопексическая функция легких), играющих роль буфера, регулирующего поступление жира в артериальную кровь. Стенки капилляров легочной тканей (а также в жировой, мышечной тканях, в селезёнке, клетках лактирующей молочной железы), а также мембраны таких клеток содержат фермент – липопротеинлипазу. АпоС является мощным активатором липопротеинлипазы. Благодаря чему, липопротеинлипаза гидролизует (высвобождает) триацил-глицерины из хиломикрона, с образованием НЭЖК (неэстерифицированные/ свободные жирные кислоты жирные кислоты, они же СЖК).

Кроме легких, хиломикроны обнаруживаются и в других органах: в жировой ткани, в печени, в селезенке, в миокарде.
Как должно быть понятно из вышеизложенного текста мицелла является транспортной формой липидов из просвета кишечника в стенку кишечника, а хиломикрон — транспортной формой липидов из стенки кишечника в кровь.
Липопротеинлипаза жировой ткани активнее в 10 раз (имеет более высокое значение Кm (константа Михаэлиса — Ментен)), чем, например, ЛП-липаза сердца, поэтому гидролиз жиров из ХМ в жировой ткани происходит в абсорбтивный период. ХМ сами по себе в клетку не проникают, гидролиз происходит на поверхности клеток где расположен фермент липопротеинлипаза, которая локализована в эндотелии капилляров. Липопротеинлипаза расщепляет триацилглицеролы из ХМ до НЭЖК и глицерола. В итоге значительная часть жирных кислот поступивших с пищей, поступает в адипоциты, где в конечном итоге они (НЭЖК) либо могут быть снова синтезированы в триацилглицеролы и сохранены в адипоците, либо (в зависимости от состояния метаболизма) выпущены в кровоток и использованы другими тканями, например мышцами, включая сердце (в том числе, в виде энергии) или печенью (для синтеза жиров).
При этом ХМ уменьшается в размерах (такие ХМ называются — остаточные ХМ). Остаточные ХМ, содержащие фосфолипиды и холестерол, поглощаются клетками печени путем эндоцитоза, посредством специфических рецепторов находящихся на поверхности печени.Уффф … так вот, как раз на весь этот процесс и уходит порядка 3-4 часов с момента принятия жиров в пищу.
Другой продукт гидролиза жиров, глицерол, растворим в крови, транспортируется в печень, где в абсорбтивный период может быть использован для синтеза жиров.
Незаменимые жирные кислоты точно также всасываются в тонком кишечнике, как и остальные жирные кислоты, и транспортируются в составе хиломикронов к органам. В тканях они используются для образования важнейших липидов, входящих в биологические мембраны, и обладающих регуляторной активностью и пр.Я знаю, что часто от меня просят каких либо практических выводов в конце статей, иногда я их делаю, иногда нет. Тут я просто хочу повторить то с чего начал, не забивайте голову мифами, питайтесь полноценно и с каждым приемом пищи, стараетесь употреблять все 3 нутриента (белок+углевод+жир). Не нужно боятся смешивать жиры с любыми нутриентами (и даже с «быстрыми углями» … о да … даже с ними), ничего там при совместном приеме мгновенно в жир не пойдет. Просто потому что на это требуется значительно больше времени, чем вам об этом рассказывают всякие диетологические функционеры и монетизаторы, а также продавцы фитнес счастья.
Ну и обещанные видео … которые помогут отдохнуть мозгу после этой кучи букв )))
Эти видео более научные … но я если честно не могу понять, как можно что то внимательно слушать когда она все это таким голосом говорит? )))))))))
ССЫЛКИ:
1. НАГЛЯДНАЯ ФИЗИ0Л0ГИЯ | С. Зильбернагль, А. Деспопулос | Перевод с английского А. С. Беляковой, А. А. Синюшина | Москва | БИНОМ. Лаборатория знаний.
2. Биохимия: Учеб. для вузов, Под ред. Е.С. Северина., 2003. 779 с. ISBN 5-9231-0254-4.
3. ФИЗИОЛОГИЯ ЧЕЛОВЕКА | Под редакцией Р. Шмидта и Г. Тевса | З-е ИЗДАНИЕ | В 3 -х томах, том 3 | Перевод с английского канд. мед. наук Н. Н. Алипова, канд. биол. наук О. В. Левашова и канд. биол. наук М. С. Морозовой | под редакцией акад. П. Г. Костюка.
4. «Нарушение липидного обмена» научно популярный журнал БиоФайл.
5. «Академические лекции по биохимии» | Липиды 200401 | ХИМИЯ И ОБМЕН ЛИПИДОВ.
ЗЫ: для въедливых и внимательных, рекомендую прочитать статью у shantramora «15 признаков псевдо-науки в статье, книге, телепередаче, веб-сайте», из которой вы можете найти пару претензий к статье, а именно смотрите признак №7 (указаны только русскоязычные источники) и №9 (не указаны номера страниц книг/ учебников) :))) а теперь сами решайте стоит ли верить автору или нет.
ЗЗЫ: если конечно страницы нужны — укажу, но главы про метаболизм липидов везде там выделены явно. 😉
—————————————-
Как превратить белый жир в бурый и почему это важно для тех, кто хочет похудеть
Что такое бурый жир
Бурый жир (Brown Adipose Tissue) обеспечивает термогенез или продукцию тепла за счёт сжигания жира. У людей с ожирением, как правило, содержится значительно меньшее количество бурого жира по сравнению с белым.
Его клетки обладают исключительной особенностью — они содержат очень много митохондрий (органелл, отвечающих за накопление энергии в клетке). В митохондриях клеток бурого жира есть особый белок UCP1, который мгновенно превращает жирные кислоты в тепло, минуя фазу синтеза АТФ.
Бурый жир позволяет сжигать жиры. При его активации происходит перекачка жирных кислот из белой жировой ткани в бурую. Белый жир откладывается под кожей, в сальниках и капсулах внутренних органов. Бурый жир вместо запасания энергии сжигает её в больших количествах, выделяя тепло.
В ходе недавнего исследования было обнаружено, что во время физических упражнений тип жировых клеток превращается из метаболически неактивных (белый, стандартный жир) в бурый жир, который сжигает больше калорий.
Теперь у учёных есть ещё больше доказательств того, что количество сожжённых калорий во время занятий спортом не лимитировано.
Этот факт является ключевым моментом для всех остальных преимуществ, которые мы получаем от физической нагрузки. Именно так считает автор этого исследования Ли-Джун Янг (Li-Jun Yang), профессор гематопатологии в Университете штата Флориды.
Все знают о пользе занятий спортом, однако мало кто задумывается о механизмах, которые запускают все эти процессы. Проведённое исследование объясняет, почему у регулярно занимающихся спортом людей стройное тело и более плотная структура кости. Кроме того, тренировки помогают предотвратить ожирение, метаболические заболевания (например диабет второго типа), проблемы с сердцем и инсульт.
Как это работает
Во время физической активности в организме вырабатывается ряд гормонов. Один из них — гормон ирисин — отвечает за регуляцию процесса расщепления жира (липолиза) в организме. Именно он считается потенциальным жиросжигателем.

В лаборатории жировые клетки были подвержены действию ирисина. Под его воздействием возросла активность другого белка, который превращал белый жир в бурый.
Бурый жир помогает телу сжигать как можно больше калорий, а не складирует их в качестве запасов в укромных местах на талии или в области бёдер.
Кроме того, бурый жир положительно влияет и на другие аспекты метаболического процесса: чувствительность к инсулину и толерантность к глюкозе. Именно эти процессы помогают предотвратить ожирение, диабет второго типа и сердечно-сосудистые заболевания.
Впервые превращение обычного жира в бурый после физических упражнений было замечено у мышей. Во время последнего исследования этот же эффект наблюдался у людей.
На этом выгоды от выработки организмом ирисина не заканчиваются. Учёные также выяснили, что при смешивании со стволовыми клетками в жировой ткани (молодые жировые клетки, не достигшие зрелого состояния) ирисин превращает её не в стандартную жировую ткань, а в нечто иное. Под воздействием гормона стволовые клетки становятся совершенно другим видом ткани, который уплотняет структуру костей и делает их более крепкими.
Ещё один интересный факт. В образце жировой ткани с добавлением ирисина количество стандартного белого жира на 20–60% меньше, чем в образце без добавления гормона. Стоит отметить, что опыты производились на образцах человеческой ткани, а не на самом человеке. Следующий шаг — повторить эксперимент на людях, чтоб окончательно подтвердить воздействие ирисина в реальной жизни, а не в лабораторных условиях.
Такое воздействие ирисина на наш организм можно считать дополнительным стимулом для тренировок, пусть данные исследований и не подтверждены на 100%. И пока доктор Янг с коллегами будет трудиться над доказательствами в стенах университета, мы можем продолжать работать над своим телом в спортивном клубе.
Добавить комментарий