Разное

Химическая формула жира: Урок №43. Жиры, их строение, свойства и применение – Формула жира в химии

Формула жира в химии

Общая формула жиров


Природные жиры, как правило, являются смесью различных триглицеридов, а не индивидуальными веществами.

Схема образования типичного триглицерида:

Чаще всего в состав жиров входят остатки следующих кислот:

Насыщенные кислоты

Пальмитиновая кислота

C15H31COOH

Стеариновая кислота

C17H35COOH

Ненасыщенные кислоты

Линолевая кислота

C17H31COOH

содержит 2 двойные связи

Олеиновая кислота

C17H33COOH

содержит 1 двойную связь

Линоленовая кислота

C17H29COOH

содержит 3 двойные связи

В состав триглицерида могут входить неодинаковые кислотные остатки (что характерно и для природных жиров). Пример молекулы триглицерида, слева – глицерин, справа – радикалы жирных кислот: пальмитиновой кислоты, олеиновой кислоты, альфа-линолевой кислоты.

Твердые жиры состоят в основном из триглицеридов, содержащих преимущественно остатки насыщенных (предельных, твердых) кислот, жидкие – из триглицеридов, содержащих преимущественно остатки непредельных (ненасыщенных, жидких) кислот.

Жидкие жиры можно превратить в твердые с помощью реакции гидрогенизации:

Для жиров, как сложных эфиров, характерна реакция гидролиза. В присутствии минеральных кислот гидролиз протекает с образованием глицерина и соответствующих карбоновых кислот (обратимый процесс). При участии щелочей гидролиз идет до конца, в этом случае образуются мыла – соли жирных кислот и щелочных металлов:

Примеры решения задач по теме «формула жира»

Понравился сайт? Расскажи друзьям!

Жиры | CHEMEGE.RU

 

Жиры – это сложные эфиры, образованные глицерином и высшими одноосновными карбоновыми кислотами (жирными кислотами).
.

Жиры образуются при взаимодействии глицерина и высших карбоновых кислот:

 

 

Жирные (высшие) кислоты
Предельные кислотыНепредельные кислоты
Масляная кислота С3Н7 -СООНОлеиновая кислота С17Н33СООН

(содержит одну двойную связь в радикале)

СН3—(СН2)7—СН = СН—(СН2)7—СООН

Пальмитиновая кислота С15Н31 — СООНЛинолевая кислота  С17Н31СООН 

(две двойные связи в радикале)

 СН3-(СН2)4-СН = СН-СН2-СН = СН-СООН

Стеариновая кислота С17Н35 — СООНЛиноленовая кислота С17Н29СООН

 (три двойные связи в радикале)

СН3СН2СН=CHCH2CH=CHCH2CH=СН(СН2)4СООН

 

Общее название жиров – триацилглицерины (триглицериды).

 Существует несколько способов назвать молекулу жира.

 Например, жир, образованный тремя остатками стеариновой кислоты, будет иметь следующие названия:

 

Жиры растворимы в органических растворителях и нерастворимы в воде. С водой жиры не смешиваются.

 

Животные жиры — предельныеРастительные жиры (масла) — непредельные
Твёрдые, образованы предельными кислотами – стеариновой и пальмитиновой.

Все животные жиры, кроме рыбьего – твёрдые.

Жидкие, образованы непредельными кислотами – олеиновой, линолевой и другими.

Все растительные жиры, кроме пальмового масла – жидкие.

 

 

1. Гидролиз (омыление) жиров

Жиры подвергаются гидролизу в кислой или щелочной среде или под действием ферментов.

 

1.1. Кислотный гидролиз 

Под действием кислот жиры гидролизуются до глицерина и карбоновых кислот, которых входили в молекулу жира.

 

Например, при гидролизе тристеарата глицерина в кислой среде образуется  стеариновая кислота и глицерин

 

 

1.2. Щелочной гидролиз — омыление жиров

При щелочном гидролизе жиров образуется глицерин и соли карбоновых кислот, входивших в состав жира.

 

Например, при гидролизе тристеарата глицерина гидроксидом натрия образуется стеарат натрия.

 

 

2. Гидрирование (гидрогенизация) ненасыщенных жиров

 

Гидрогенизация жиров — это процесс присоединения водорода к остаткам непредельных кислот, входящих в состав жира.

При этом остатки непредельных кислот переходят в остатки предельных, жидкие растительные жиры превращаются в твёрдые (маргарин).

Например, триолеат глицерина при гидрировании превращается в тристеарат глицерина:

 

    Количественной характеристикой степени ненасыщенности жиров служит йодное число, показывающее, какая масса йода может присоединиться по двойным связям к 100 г жира.

 

3. Мыло  и синтетические моющие средства

 

При щелочном гидролизе жиров образуются мыла соли высших жирных кислот.

Стеарат натрия – твёрдое мыло.

Стеарат калия – жидкое мыло.

Моющая способность мыла зависит от жесткости воды. Оно хорошо мылится и стирает в мягкой воде, плохо стирает в жёсткой воде и совсем не стирает в морской воде, так как содержащие в ней ионы Ca2+ и Mg2+ дают с высшими кислотами нерастворимые в воде соли.

Например, тристеарат глицерина взаимодействует с сульфатом кальция 

 

Поэтому наряду с мылом используют  синтетические моющие средства.

Их производят из других веществ, например из алкилсульфатов — солей сложных эфиров высших спиртов и серной кислоты.

Спирт реагирует с серной кислотой с образованием алкилсульфата.

 

 

Далее алкилсульфат гидролизуется щелочью:

 

 

Эти соли содержат в молекуле от 12 до 14 углеродных атомов и обладают очень хорошими моющими свойствами. Кальциевые и магниевые соли этих веществ растворимы в воде, а потому такие мыла моют и в жесткой воде. Алкилсульфаты содержатся во многих стиральных порошках.

 

Поделиться ссылкой:

Жиры | Химия онлайн

Жиры — сложные эфиры глицерина и высших одноатомных карбоновых кислот.

Общее название таких соединений — триглицериды или триацилглицерины, где ацил — остаток карбоновой кислоты -C (O) R.

В состав природных триглицеридов входят остатки насыщенных (предельных) кислот (пальмитиновой C15H31COOH, стеариновой C17H35COOH) и ненасыщенных (непредельных) кислот (олеиновой C17H33COOH, линолевой C17H29COOH).

В состав молекул триглицеридов могут входить разнородные кислотные радикалы, но остаток глицерина является составной частью всех жиров:

Общая формула жиров (триглицеридов):  

где R1, R2, R3 – углеводородные радикалы высших карбоновых кислот.

Жиры содержатся во всех растениях и животных. Они представляют собой смеси (например, сливочное масло содержит около 20 остатков различных кислот, остальные жиры – по 5-8) полных сложных эфиров глицерина и не имеют четко выраженной температуры плавления.

Биологическая роль жиров

Жиры в природе

История открытия жиров

Классификация жиров

Номенклатура жиров

Физические свойства жиров

Незаменимые жирные кислоты

Химические свойства жиров

Получение жиров

Применение жиров

Сложные эфиры — номенклатура, получение, химические свойства. Жиры. Мыла » HimEge.ru

Важнейшими представителями сложных  эфиров являются жиры.

Жиры – это сложные эфиры глицерина и высших одноатомных карбоновых кислот. Общее название таких соединений – триглицериды или триацилглицерины, где ацил – остаток карбоновой кислоты -C(O)R. В состав природных триглицеридов входят остатки насыщенных кислот (пальмитиновой C15H31COOH, стеариновой C17H35COOH) и ненасыщенных (олеиновой C17H33COOH, линолевой C17H31COOH). Высшие карбоновые кислоты, которые входят в состав жиров имеют всегда четное количество атомов углерода (С8 – С18) и неразветвленный углеводородный остаток. Природные жиры и масла – это смеси глицеридов высших карбоновых кислот.

Состав и строение жиров могут быть отражены общей формулой:

Этерификация — реакция образования сложных эфиров.

В состав жиров могут входить остатки как предельных, так и непредельных карбоновых кислот в различных сочетаниях.

В обычных условиях жиры, содержащие в своем составе остатки непредельных кислот, чаще всего бывают жидкими. Их называют маслами. В основном, это жиры растительного происхождения — льняное, конопляное, подсолнечное и другие масла (исключения пальмовое и кокосовое масла – твердые в обычных условиях). Реже встречаются жидкие жиры животного происхождения, например рыбий жир. Большинство природных жиров животного происхождения при обычных условиях – твердые (легкоплавкие) вещества и содержат в основном остатки предельных карбоновых кислот, например бараний жир.
Состав жиров определяет их физические и химические свойства.

            Жиры нерастворимы в воде, не имеют четкой температуры плавления и значительно увеличиваются в объеме при плавлении.

Агрегатное состояние жиров твердое, это связано с тем, что в состав жиров входят остатки предельных кислот и молекулы жиров способны к плотной упаковке. В состав масел, входят остатки непредельных кислот в cis – конфигурации, следовательно плотная упаковка молекул невозможна, и агрегатное состояние – жидкое.

Жиры (масла) являются сложными эфирами и для них характерны реакции сложных эфиров.

Понятно, что для жиров, содержащих остатки ненасыщенных карбоновых кислот, характерны все реакции непредельных соединений. Они обесцвечивают бромную воду, вступают в другие реакции присоединения. Наиболее важная в практическом плане реакция – гидрирование жиров. Гидрированием жидких жиров получают твердые сложные эфиры. Именно эта реакция лежит в основе получения маргарина — твердого жира из растительных масел. Условно этот процесс можно описать уравнением реакции:

Все жиры, как  и другие сложные эфиры, подвергаются гидролизу:

Гидролиз сложных эфиров- обратимая реакция. Чтобы сместить равновесие в  сторону образования продуктов гидролиза, его проводят в щелочной среде (в присутствие щелочей или Na2CO3). В этих условиях гидролиз жиров протекает обратимо, и приводит к образованию солей карбоновых кислот, которые называются мылами. Гидролиз жиров в щелочной среде называют омылением жиров.

При  омылении жиров образуются глицерин и  мыла – натриевые и калиевые соли высших карбоновых кислот:

Омыление – щелочной гидролиз жиров, получение мыла.

Мыла – смеси натриевых (калиевых) солей высших предельных карбоновых кислот (натриевое мыло – твердое,  калиевое — жидкое).

 

Мыла являются поверхностно-активными веществами (сокращенно: ПАВами, детергентами). Моющее действие мыла связано с тем, что мыла эмульгируют жиры. Мыла образуют мицеллы с загрязняющими веществами (условно —  это жиры с различными включениями).

Липофильная часть молекулы мыла растворяется в загрязняющем веществе, а гидрофильная часть оказывается на поверхности мицеллы. Мицеллы заряжены одноименно, следовательно отталкиваются, при этом загрязняющее вещество и вода превращается в эмульсию (практически – это грязная вода).

В воде также происходит гидролиз мыла, при этом  создается щелочная среда.

Мыла нельзя использовать в жесткой и морской воде, так как образующиеся при этом стеараты кальция (магния) в воде нерастворимы.

Практическое пособие по химии

РАБОЧИЕ ТЕТРАДИ

Продолжение. Начало см. в № 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40/2004

Жирами называют сложные эфиры глицерина и высших карбоновых кислот:

где R, R’ и R» – углеводородные радикалы высших карбоновых (жирных) кислот, преимущественно от С3 до С17. Карбоновые кислоты могут быть различными, но всегда нормального строения и, как правило, с четным числом атомов углерода.
Жиры – главная составная часть жировых клеток животных и растений – являются одним из важнейших пищевых резервов организма. При окислении жиров выделяется значительно больше энергии, чем при окислении углеводов и белков.
Три наиболее распространенные в природе жирные кислоты – это предельные кислоты: пальмитиновая (С16), стеариновая (С18) – и непредельная олеиновая (С18) кислота. У большинства ненасыщенных жирных кислот, входящих в состав жиров, масел и биологических мембран, преобладающим является цисизомер, трансизомер встречается редко. Чем выше степень ненасыщенности жирной кислоты, тем ниже ее температура плавления (табл. 16).

Таблица 16

Наиболее распространенные в биообъектах жирные кислоты

Структурная формула Название Температура плавления, °С

Насыщенные жирные кислоты

СН3(СН2)10СООН
СН3(СН2)12СООН
СН3(СН2)14СООН
СН3(СН2)16СООН
СН3(СН2)18СООН
Лауриновая10
Миристиновая10
Пальмитиновая10
Стеариновая10
Арахиновая
4410
5810
6310
7010
7710

Ненасыщенные жирные кислоты

СН3(СН2)5СН=СН(СН2)7СООН
СН3(СН2)7СН=СН(СН2)7СООН
СН3(СН2)4(СН=СНСН2)2(СН2)6СООН
СН3СН2(СН=СНСН2)3(СН2)6СООН
СН3(СН2)4(СН=СНСН2)4(СН2)2СООН
Пальмитин-олеиновая10
Олеиновая10
Линолевая10
Линоленовая10
Арахидоновая
–110
1610
–510
–1110
–4910

Названия жиров. Природные жиры (триацилглицерины) являются триэфирами глицерина и жирных кислот. Обычное название этих соединений – триглицериды. Известны не только глицериды одинаковых кислот (простые глицериды), но и преимущественно разных кислот (смешанные глицериды). Например:

Животные жиры содержат главным образом глицериды предельных кислот и являются твердыми веществами. Растительные жиры, часто называемые маслами, содержат глицериды непредельных карбоновых кислот. Это, например, жидкие подсолнечное, конопляное и льняное масла.


Сельскохозяйственные культуры,
из которых получают растительные масла
Химические свойства жиров

Жиры под влиянием ферментов или в присутствии кислотных катализаторов гидролизуются с образованием глицерина и карбоновых кислот:

Гидролиз жиров в щелочной среде дает глицерин и растворимые соли карбоновых кислот:

В результате окисления жиров наряду с освобождением энергии образуется довольно много воды. При недостатке питьевой воды это позволяет легче переносить жажду:

Гидрирование жиров – превращение жидких растительных масел в твердые жиры – имеет большое значение для пищевых целей. Так в промышленности получают маргарин:

Задача. Напишите структурные формулы всех возможных триглицеридов, образованных остатками (по одному) олеиновой, пальмитиновой и стеариновой кислот.

Решение

Возможны три варианта, различающиеся расположением остатков названных кислот при центральном атоме С-2 глицерина:

УПРАЖНЕНИЯ

1. 2-Олеил-1,3-дистеарилглицерин, содержащийся в кокосовом масле, гидрируют 2, Pt) по двойной связи в тристеарин. Напишите уравнение реакции гидрирования. Укажите, какому веществу соответствует температура плавления +43 °С и какому +72 °С.




2. Дайте названия жирам, образованным глицерином и: а) линолевой кислотой;
б) пальмитин-олеиновой кислотой; в) комбинацией этих двух кислот. Приведите их структурные формулы.




3. Какие жирные кислоты образуются при гидролизе 2-линолеил-1,3-диолеилглицерина? Какой другой триацилглицерин дает такие же жирные кислоты и в той же пропорции? Составьте уравнение реакции гидролиза одного из этих жиров.




4. Напишите две возможные формулы жира, имеющего в молекуле 57 атомов углерода и вступающего в реакцию с бромом в мольном соотношении 1:2.




5. При сгорании 1 моль жира образуется 57 моль углекислого газа и 54 моль воды. Напишите две возможные формулы жира, образованного кислотами с четным числом углеродных атомов.




6. Образец жира может вступить в реакцию с 0,4 моль водорода. Продукт гидрирования вступает в реакцию гидролиза с 0,6 моль NaOH, при этом образуется соль только одной кислоты, масса соли равна 183,6 г. Вычислите относительную молекулярную массу жира и приведите одну из возможных его формул.




7. Образец жира вступает в реакцию кислотного гидролиза. Масса продуктов гидролиза на 2,7 г больше массы исходного жира. В результате гидролиза образовалась только одна кислота массой 38,4 г. Вычислите молекулярную масcу жира и приведите одну из возможных его формул.




1.

2.

3.

Другой возможный триацилглицерин:

4. Углеродный состав молекулы жира складывается из трех атомов С глицерина и трех остатков карбоновых кислот Сх, Су, Сz. Причем 3 + х + у + z = 57. Если х = у = z, то 3х = 54, х = 18, или в молекуле кислотной компоненты жира 18 атомов С. Кроме того, в формуле жира должны содержаться две двойные связи:

5. Поскольку из 1 моль жира образуется 57 моль СО2, в молекуле этого жира 57 атомов С (ср. с упражнением 4). Число атомов Н в формуле жира: 2•54 = 108. За вычетом 5 атомов Н остатка глицерина на три остатка кислоты приходится 103 атома Н: 35 + 35 + 33 и др.
Две возможные формулы жира:

6. При гидролизе жиров на связывание образующихся кислот в виде солей расходуется трехкратное мольное количество щелочи. Поэтому (жира) = 1/3(NaOH) = 0,2 моль.
Расход водорода в реакции гидрирования: (Н2) = 0,4 моль – свидетельствует о том, что в молекуле жира имеется две двойные связи. Количество вещества соли, образующейся при гидролизе, (СnH2n+1COONa) = 0,6 моль, ее масса m(соли) = 183,6 г.
Молярная масса соли:

М(соли) = m/ = 183,6/0,6 = 306 г/моль.

Подставим значения атомных масс элементов в общую формулу соли СnH2n+1COONa (сумма Аr элементов формулы равна Мr(соли)) и найдем n:

12n + 2n + 1 + 44 + 23 = 306, 14n = 238, n = 17.

Возможная формула жира:

7. Прибавка по массе продуктов гидролиза обусловлена присоединившейся водой. Причем количество вещества воды (в моль) в три раза больше количества вещества гидролизуемого жира: (Н2О) = 3(жира).
А вот количества веществ гидролизной воды и образующейся кислоты одинаковы:
2О) = (RCOOH).
Проведем необходимые расчеты:

2О) = m/M = 2,7/18 = 0,15 моль;

М(RCOOH) = 38,4/0,15 = 256 г/моль, R = С15Н31;

М(жира) = 3М15Н31СООН) + М(глицерина) – 3М2О) = = 3•256 + 92 – 54 = 806 г/моль.

Формула жира:

Ответы@Mail.Ru: формула жира

Жиры — органические соединения, представляющие собой сложные эфиры трехатомного спирта глицерина и высших или средних жирных кислот. Срдержится во всех животных и растительных тканях. Общую формулу жиров можно записать так: О ? Ch3 — O — C — R О ? CH — O — C — R1 О ?’ Ch3 — O — C — R2 Все природные жиры — смесь глицеридов, не только симметричных, т. е. с тремя одинаковыми остатками жирных кислот, но и смешанных. Симметричные глицериды встречаются чаще в растительных маслах. Животные жиры отличаются весьма разнообразным составом жирных кислот. Жирные кислоты, входящие в состав триглициридов, определяют их свойства. Триглицириды способны вступать во все химические реакции, свойственные эфирам. Наибольшее значение имеет реакция омыления, в результате которой из триглицирида образуется глицерин и жирные кислоты. O Ch3-O-C-R O Ch3OH CH-O-C-R + 3 h3O = CHOH + 3 R COOH O Ch3OH жирная кислота Ch3-O-C-R глицерин триглицирид Омыление происходит как при гидролизе, так и при действии кислот или щелочей.

<img src=»//content.foto.my.mail.ru/mail/dmitrikorneev/_answers/i-1477.jpg» > Жиры, или триглицериды — природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот; входят в класс липидов. Наряду с углеводами и белками, жиры — один из главных компонентов клеток животных, растений и микроорганизмов. Жидкие жиры растительного происхождения обычно называют маслами — так же, как и сливочное масло. Природные жиры содержат в своём составе три кислотных радикала, имеющих неразветвлённую структуру и, как правило, чётное число атомов углерода (содержание «нечетных» кислотных радикалов в жирах обычно менее 0,1 %). Жиры гидрофобны, практически нерастворимы в воде, хорошо растворимы в органических растворителях и обычно плохо растворимы в спирте.

Физические свойства жиров | Химия онлайн

По агрегатному состоянию при комнатной температуре жиры (смеси триглицеридов) – твердые, мазеобразные или жидкие вещества. Агрегатное состояние жиров определяется природой жирных кислот. 

Животные жиры (бараний, свиной, говяжий и т.п.), как правило, являются твердыми веществами с невысокой температурой плавления (исключение — рыбий жир). Они состоят главным образом из триглицеридов насыщенных (предельных) карбоновых кислот.

Растительные жиры — масла (подсолнечное, соевое, хлопковое и др.) — жидкости (исключение — кокосовое масло, масло какао-бобов). В состав триглицеридов масел входят остатки ненасыщенных (непредельных) карбоновых кислот.

Все жиры легче воды и практически не растворимы в воде, но при добавлении мыла или других поверхностно-активных веществ (эмульгаторов), они способны образовывать стойкие водные эмульсии. Жиры ограниченно растворимы в спирте и хорошо растворимы во многих неполярных и малополярных растворителях – эфире, бензоле, хлороформе, бензине.

Жиры не имеют четкой температуры плавления (т.е. плавятся в некотором диапазоне температур). Определенной температурой плавления характеризуются лишь индивидуальные триглицериды.

Температура плавления жира тем выше, чем больше в нем содержание предельных кислот. Она также зависит от длины углеводородной цепи жирной кислоты, температура плавления увеличивается с ростом длины углеводородного радикала.

Причиной снижения температуры плавления триглицеридов с остатками ненасыщенных кислот является наличие в них двойных связей с цис-конфигурацией. Это приводит к существенному изгибу углеродной цепи, нарушающему упорядоченную (параллельную) укладку длинноцепных радикалов кислот.

Сравним пространственное строение ненасыщенной и насыщенной и кислот с равным числом углеродных атомов в цепи: олеиновой C17H33COOH и стеариновой C17H35COOH.

На молекулярной модели олеиновой кислоты виден изгиб цепи по связи С=С, препятствующий плотной упаковке молекул.

В углеродной цепи стеариновой кислоты отсутствуют изгибы, поэтому ее молекулы способны к плотной параллельной укладке.

Чем плотнее упаковка молекул вещества, тем выше температуры его фазовых переходов (т.плав., т.кип.). Соответственно, температура плавления тристеарата глицерина (71 oC) существенно больше, чем у триолеата (–17 oC).

Видеоопыт «Определение непредельности жиров»

Жиры

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *