Разное

Жиры природные: Урок №43. Жиры, их строение, свойства и применение – ЖИРЫ • Большая российская энциклопедия

Природные жиры — Большая Энциклопедия Нефти и Газа, статья, страница 1

Природные жиры

Cтраница 1

Природные жиры представляют собой не индивидуальное вещество, а смесь различных триглицеридов.  [1]

Природные жиры не являются индивидуальными соединениями. Наоборот, они представляют собой смеси глицеридов, образованных различными кислотами.  [2]

Природные жиры представляют собой не индивидуальное вещество, а смесь различных триглицеридов.  [3]

Природные жиры представляют собой не индивидуальное вещество, а смесь различных глицеридов.  [4]

Природные жиры и масла представляют собой смеси смешан-х риацилглицеринов.  [5]

Природные жиры классифицируют на основании содержащихся в них главных кислот. Интересно, что эта классификация совпадает с классификацией жиров по их биологическому происхождению. Иными словами, жиры, содержащиеся в биологически родственных организмах, часто имеют химическое сходство.  [6]

Природные жиры и масла растительного и животного происхождения являются смесями различных сложных эфиров.  [7]

Природные жиры и масла можно либо непосредственно восстанавливать в высшие спирты и глицерин, либо предварительно подвергать переэтерификации низшими спиртами. Наряду с этим методом, который применяется до сих пор, существует еще два метода производства высших первичных спиртов.  [8]

Природные жиры представляют собой смеси различных триглицеридов.  [9]

Природные жиры и жирные масла представляют собой смеси сложных эфиров глицерина ( глицериды) с насыщенными и ненасыщенными высшими жирными кислотами, а также с оксикислотами. На практике растительные жиры, обычно жидкие при комнатной температуре, называют маслами, твердые животные жиры — просто жирами; жиры морских животных-ворванями. Сходные во многом эфиры высокомолекулярных кислот и высокомолекулярных спиртов называют вескими. Наименование масел придается также некоторым веществам, сходным по внешнему виду с жирами, но не имеющими ничего общего с маслами или жирами. Так, эфирные масла-это смеси терпенов, минеральные масла-смеси углеводородов нефти.  [10]

Природные жиры являются смесью различных глицеридов, которые могут быть простыми и смешанными. Простыми, или однокислотными, глицеридами называют такие, в которых все три гидроксила глицерина этерифицированы одной какой-нибудь кислотой, например СзНзЮСОС НззЬ — тристеарин. Смешанными, или разнокислотными, глицеридами называют такие, в которых гидроксилы глицерина этерифицированы разными кислотами, например CaHsCOCOC Hai) ( ОСОС Нзз) ( ОСОС Нзз) — пальмитостеароолеин.  [11]

Природные жиры и даже отдельные их представители в большей или меньшей мере различаются химическим составом входящих в них глицеридов и сопутствующих веществ. Степень различия зависит от особенностей сырья, из которого они получены, и от некоторых других причин. Большое влияние на состав жиров оказывают условия развития и жизни животного организма и растения. Влияет на него и способ извлечения жира из сырья и качество последнего. У животных состав жиров в жировой ткани качественно может быть непостоянным. Часть его синтезируется в результате превращения углеводов пищи, а с другой стороны, в тканях животных может откладываться жир, находящийся в пище. В качестве примера можно указать на то обстоятельство, что если в рацион свиней включить на длительное время подсолнечные жмыхи, то в жире их резко увеличивается содержание линолевои кислоты. Таким образом, состав каждого жира по многим причинам может иметь колебания в определенных пределах, что отражается на его качественных показателях. Однако колебания эти происходят в нешироких, характерных для отдельных жиров пределах.  [12]

Природные жиры и жирные масла представляют собой смеси сложных эфиров глицерина ( глицериды) с насыщенными и ненасыщенными высшими жирными кислотами, а также с оксикислотами. На практике растительные жиры, обычно жидкие при комнатной температуре, называют маслами, твердые животные жиры — просто жирами; жиры морских животных-вбрванями. Сходные во многом эфиры высокомолекулярных кислот и высокомолекулярных спиртов называют восками. Наименование масел придается также некоторым веществам, сходным по внешнему виду с жирами, но не имеющими ничего общего с маслами или жирами. Так, эфирные масла-это смеси терпенов, минеральные масла-смеси углеводородов нефти.  [13]

Природные жиры не являются однородными веществами, а представляют собой смесь триглицеридов. Триглицериды могут быть простыми или смешанными. Простыми триглицеридами называются такие, в которых все три кислотных радикала принадлежат какой-либо одной кислоте. Примерами простых триглицеридов являются триолеин, трипальми-тин и тристеарин, формулы которых приводятся ниже.  [14]

Природные жиры представляют собой смеси так называемых простых ( все три кислотных радикала одинаковые) и смешанных ( кислотные радикалы разные) триглицеридов. Кроме того, в состав жиров входят в небольших количествах фосфатиды, стерины и стериды, пигменты и витамины.  [15]

Страницы:      1    2    3    4

Жиры природные — Справочник химика 21

    Жиры. Природные животные и растительные жиры (последние обычно называют маслами) представляют собой смеси сложных эфиров, образованных высшими жирными кислотами (см. разд. 29.13) и трехатомным спиртом глицерином. Приведем схему образования эфира глицерина и стеариновой кислоты  [c.579]

    Обрыв цепи происходит обычно р результате рекомбинации или диспропорционирования радикалов, однако практически такой процесс, как показано ниже, осложняется реакцией взаимодействия радикала с растворителем или образующимися продуктами. Процессы аутоокисления могут быть предотвращены добавкой веществ (антиоксидантов или ингибиторов), способных действовать как эффективные ловушки радикалов . Эта особенность реакций аутоокисления используется и на практике Например, во избежание полимеризации мономеров к ним добавляют фенолы или амины для предотвращения же прогоркания непредельных жиров природного происхождения применяют в качестве антиоксидантов токоферолы. Действие органических ингибиторов не является каталитическим. Течение реакции аутоокисления становится нормальным по мере полного израсходования ингибирующего вещества. В соответствии с этим аутоокисление бензальдегида в бензойную кислоту, ингибируемое присутствием небольших количеств олефина, возобновляется после превращения всего олефина в эпоксидное соединение, гликоль или карбонильные соединения . 

[c.13]


    К классу сложных эфиров относятся и такие важные вещества, как жиры природного и растительного происхождения. [c.350]

    Жиры — природные продукты, получаемые из жировых тканей животных или из семян и плодов растений. По происхождению жиры делятся на животные и растительные, которые чаще называют маслами. Жиры составляют основу питания человека и по энергетической ценности вдвое превышают белки и углеводы. В фармации жиры широко используются как мазевые основы, а масла — в приготовлении масляных растворов лекарственных средств. 

[c.423]

    Растительные и животные масла и жиры. Природные масла благодаря наличию в них ненасыщенных связей менее вязки иболее текучи, чем жиры. И масла, и жиры — это сложные эфиры жирных кислот и глицерина в природе они всегда встречаются в виде различных смесей. Природные жиры быстро портятся из-за своей химической ненасыщенности. Поэто- [c.104]

    Твердые жиры (природные и полученные гидрогенизацией жидких жиров) дают твердые мыла. Жидкие масла (содержащие много ненасыщенных жидких кислот) дают более мягкие мыла. [c.241]

    При взаимодействии глицерина с карбоновыми кислотами, подобными тем, с которыми мы познакомились в главе 18 (стр. 496), образуются жиры. Природные жиры образованы кислотами, содержащими в своих молекулах от 12 до 20 атомов углерода, причем наиболее распространены кислоты с числом атомов углерода от 16 до 18. 

[c.630]

    Практический смысл этой реакции заключается в том, что из жидких жиров получаются твердые. Таким образом, представляется возможность растительные жиры, природные ресурсы которых гораздо богаче, превратить в твердые жиры, аналогичные животным жирам, которые являются более ценными в качестве пищевых продуктов и сырья для промышленности. [c.197]

    ЖИРЫ — природные растительные и животные продукты, являющиеся сложными эфирами глицерина и жирных к-т. [c.79]

    Порча жиров является частично результатом процесса самоокисления, сопровождающегося разрывом углеродной цеп . Особенно легко окисляются ненасыщенные жирные кислоты, так как они способны вступать в реакцию с кислородом воздуха. При этом кислород сначала присоединяется не по месту двойной связи, а к СНз-группе, находящейся между двойными связями. Только после этого происходит перегруппировка и расщепление молекулы. При на личии нескольких двойных связей они смещаются. Эти очень сложные процессы не могут здесь рассматриваться более подробно. С прогорканием в известной мере сходно высыхание масел в пленках лакокрасочных материалов. В этом случае, наряду с окислением, происходят также полимеризация и поликонден-оация, имеющие большее значение для процесса образования пленки. Прогор кание жиров можно предотвратить применением антиокислителей, что прак тически используется в широком масштабе для консервирования пищевых жиров. Природные жиры до известной степени защищены от прогоркания природными антиокислителями. Прн очистке жиров эти антиокислители удаляются, поэтому природные неочищенные жиры зачастую более устойчивы при хране НИИ, чем очищенные. Прогоркание жиров является не только процессом само (жисления, при котором образуются продукты расщепления с дурным запахом (кетоны, альдегиды и низшие жирные кислоты) одновременло протекают и энзиматические процессы, омыление и разложение под действием бактерий и грибков. 

[c.395]


    Стабильность растительных масел в значительной степени определяется находяшимися в них природными антиокислителями — в первую очередь токоферолами (спирты сложного состава, содержащиеся во многих растительных маслах). Установлено, что 7-токоферол является более устойчивым антиокислителем, чем а-форма, и в его присутствии происходит образование веществ, также обладающих антиокислительным действием. Наиболее сильно действует 5-токоферол. В табл. 4.25 показано содержание токоферолов в ряде жиров. Природным антиокислителем в хлопковом масле является госсипол — полифенол, содержащий в молекуле две карбонильные фуппы. [c.232]

    В предыдущей главе речь шла о выделении нормальных парафиновых углеводородов из керосиновых и дизельных фракций с числом углеродных атомов от 10 до 20, так называемых жидких парафинов. Указывалось, что одним пз главнейших направлений использования нормальных парафинов является производство линейных алкилбензолов и а ткилбензосульфонатов (ЛАБ, ЛАБС), то есть веществ, которые являются одним из основных компонентов при производстве синтетических моющих веществ или поверхностно-активных веществ (ПАВ). Сравнительно недавно для производства моющих веществ использовалось значительное количество жиров природного характера (растительных масел и животных жиров). С использованием жидких нормальных парафинов для этих целей жиры высвобождаются, увеличивая тем самым ресурсы для обеспечения

Природные жиры — Большая Энциклопедия Нефти и Газа, статья, страница 1

Природные жиры

Cтраница 1

Природные жиры представляют собой не индивидуальное вещество, а смесь различных триглицеридов.  [1]

Природные жиры не являются индивидуальными соединениями. Наоборот, они представляют собой смеси глицеридов, образованных различными кислотами.  [2]

Природные жиры представляют собой не индивидуальное вещество, а смесь различных триглицеридов.  [3]

Природные жиры представляют собой не индивидуальное вещество, а смесь различных глицеридов.  [4]

Природные жиры и масла представляют собой смеси смешан-х риацилглицеринов.  [5]

Природные жиры классифицируют на основании содержащихся в них главных кислот. Интересно, что эта классификация совпадает с классификацией жиров по их биологическому происхождению. Иными словами, жиры, содержащиеся в биологически родственных организмах, часто имеют химическое сходство.  [6]

Природные жиры и масла растительного и животного происхождения являются смесями различных сложных эфиров.  [7]

Природные жиры и масла можно либо непосредственно восстанавливать в высшие спирты и глицерин, либо предварительно подвергать переэтерификации низшими спиртами. Наряду с этим методом, который применяется до сих пор, существует еще два метода производства высших первичных спиртов.  [8]

Природные жиры представляют собой смеси различных триглицеридов.  [9]

Природные жиры и жирные масла представляют собой смеси сложных эфиров глицерина ( глицериды) с насыщенными и ненасыщенными высшими жирными кислотами, а также с оксикислотами. На практике растительные жиры, обычно жидкие при комнатной температуре, называют маслами, твердые животные жиры — просто жирами; жиры морских животных-ворванями. Сходные во многом эфиры высокомолекулярных кислот и высокомолекулярных спиртов называют вескими. Наименование масел придается также некоторым веществам, сходным по внешнему виду с жирами, но не имеющими ничего общего с маслами или жирами. Так, эфирные масла-это смеси терпенов, минеральные масла-смеси углеводородов нефти.  [10]

Природные жиры являются смесью различных глицеридов, которые могут быть простыми и смешанными. Простыми, или однокислотными, глицеридами называют такие, в которых все три гидроксила глицерина этерифицированы одной какой-нибудь кислотой, например СзНзЮСОС НззЬ — тристеарин. Смешанными, или разнокислотными, глицеридами называют такие, в которых гидроксилы глицерина этерифицированы разными кислотами, например CaHsCOCOC Hai) ( ОСОС Нзз) ( ОСОС Нзз) — пальмитостеароолеин.  [11]

Природные жиры и даже отдельные их представители в большей или меньшей мере различаются химическим составом входящих в них глицеридов и сопутствующих веществ. Степень различия зависит от особенностей сырья, из которого они получены, и от некоторых других причин. Большое влияние на состав жиров оказывают условия развития и жизни животного организма и растения. Влияет на него и способ извлечения жира из сырья и качество последнего. У животных состав жиров в жировой ткани качественно может быть непостоянным. Часть его синтезируется в результате превращения углеводов пищи, а с другой стороны, в тканях животных может откладываться жир, находящийся в пище. В качестве примера можно указать на то обстоятельство, что если в рацион свиней включить на длительное время подсолнечные жмыхи, то в жире их резко увеличивается содержание линолевои кислоты. Таким образом, состав каждого жира по многим причинам может иметь колебания в определенных пределах, что отражается на его качественных показателях. Однако колебания эти происходят в нешироких, характерных для отдельных жиров пределах.  [12]

Природные жиры и жирные масла представляют собой смеси сложных эфиров глицерина ( глицериды) с насыщенными и ненасыщенными высшими жирными кислотами, а также с оксикислотами. На практике растительные жиры, обычно жидкие при комнатной температуре, называют маслами, твердые животные жиры — просто жирами; жиры морских животных-вбрванями. Сходные во многом эфиры высокомолекулярных кислот и высокомолекулярных спиртов называют восками. Наименование масел придается также некоторым веществам, сходным по внешнему виду с жирами, но не имеющими ничего общего с маслами или жирами. Так, эфирные масла-это смеси терпенов, минеральные масла-смеси углеводородов нефти.  [13]

Природные жиры не являются однородными веществами, а представляют собой смесь триглицеридов. Триглицериды могут быть простыми или смешанными. Простыми триглицеридами называются такие, в которых все три кислотных радикала принадлежат какой-либо одной кислоте. Примерами простых триглицеридов являются триолеин, трипальми-тин и тристеарин, формулы которых приводятся ниже.  [14]

Природные жиры представляют собой смеси так называемых простых ( все три кислотных радикала одинаковые) и смешанных ( кислотные радикалы разные) триглицеридов. Кроме того, в состав жиров входят в небольших количествах фосфатиды, стерины и стериды, пигменты и витамины.  [15]

Страницы:      1    2    3    4

что такое жиры? представители их.. ? химические и физические свойства

Жиры, или триглицериды — природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот; входят в класс липидов. Наряду с углеводами и белками, жиры — один из главных компонентов клеток животных, растений и микроорганизмов. Жидкие жиры растительного происхождения обычно называют маслами — так же, как и сливочное масло. Состав, структура жиров Состав жиров отвечает общей формуле: Ch3-O-C(O)-R | CH-О-C(O)-R | Ch3-O-C(O)-R, где R, R и R — радикалы (иногда — различных) жирных кислот. Природные жиры содержат в своём составе три кислотных радикала, имеющих неразветвлённую структуру и, как правило, чётное число атомов углерода (содержание «нечетных» кислотных радикалов в жирах обычно менее 0,1 %). Жиры гидрофобны, практически нерастворимы в воде, хорошо растворимы в органических растворителях и обычно плохо растворимы в спирте. Природные жиры содержат следующие жирные кислоты: Насыщенные: * стеариновая (C17h45COOH) * пальмитиновая (C15h41COOH) Ненасыщенные: * пальмитолеиновая (C15h39COOH, 1 двойная связь) * олеиновая (C17h43COOH, 1 двойная связь) * линолевая (C17h41COOH, 2 двойные связи) * линоленовая (C17h39COOH, 3 двойные связи) * арахидоновая (C19h41COOH, 4 двойные связи, реже встречается) Животные жиры Чаще всего в животных жирах встречаются стеариновая и пальмитиновая кислоты, ненасыщенные жирные кислоты представлены в основном олеиновой, линолевой и линоленовой кислотами. Физико-химические и химические свойства жиров в значительной мере определяются соотношением входящих в их состав насыщенных и ненасыщенных жирных кислот. Растительные масла В растениях жиры содержатся в сравнительно небольших количествах, за исключением семян масличных растений, в которых содержание жиров может быть более 50 %. Гидролиз жиров Расщепление жиров на глицерин и жирные кислоты проводится обработкой их щёлочью — (едким натром) , перегретым паром, иногда — минеральными кислотами. Этот процесс называется омылением (см. Мыло) . Свойства жиров Энергетическая ценность жира приблизительно равна 9 ккал на грамм, что соответствует 38 кДж/г. Таким образом, энергия, выделяемая при расходовании 1 грамма жира, приблизительно соответствует, с учетом ускорения свободного падения, поднятию груза массой 3900 кг на высоту 1 метр. При сильном взбалтывании с водой жидкие (или расплавленные) жиры образуют более или менее устойчивые эмульсии (см. гомогенизация) . Природной эмульсией жира в воде является молоко. Пищевые свойства жиров Жиры являются одним из основных источников энергии для млекопитающих. Эмульгирование жиров в кишечнике (необходимое условие их всасывания) осуществляется при участии солей жёлчных кислот. Энергетическая ценность жиров примерно в 2 раза выше, чем углеводов, при условии их биологической доступности и здорового усвоения организмом. Жиры выполняют важные структурные функции в составе мембранных образований клетки, в субклеточных органеллах. Благодаря крайне низкой теплопроводности жир, откладываемый в подкожной жировой клетчатке, служит термоизолятором, предохраняющим организм от потери тепла (у китов, тюленей и др.) . Применение жиров * Пищевая промышленность * Фармацевтика * Производство мыла и косметических изделий * Производство смазочных материалов

эссенциальный нутриент функции: -энергетическая -строительный материал -защитная\-принимает участие в витаминном обмене бывают растительного и животного происхождения

Жиры, или триглицериды — природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот; входят в класс липидов. Состав жиров отвечает общей формуле: Ch3-O-C(O)-R | CH-О-C(O)-R | Ch3-O-C(O)-R, где R, R и R — радикалы (иногда — различных) жирных кислот. Гидролиз жиров Расщепление жиров на глицерин и жирные кислоты проводится обработкой их щёлочью — (едким натром) , перегретым паром, иногда — минеральными кислотами. Этот процесс называется омылением (см. Мыло) . Свойства жиров Энергетическая ценность жира приблизительно равна 9 ккал на грамм, что соответствует 38 кДж/г. Таким образом, энергия, выделяемая при расходовании 1 грамма жира, приблизительно соответствует, с учетом ускорения свободного падения, поднятию груза массой 3900 кг на высоту 1 метр. При сильном взбалтывании с водой жидкие (или расплавленные) жиры образуют более или менее устойчивые эмульсии (см. гомогенизация) . Природной эмульсией жира в воде является молоко.

Сложные эфиры глицерина и кислот карбоновых одноосновных. Остальное в уч. пособии

Жиры — это… Что такое Жиры?

У этого термина существуют и другие значения, см. Жир. Шариковая модель триглицерида. Красным цветом выделен кислород, чёрным — углерод, белым — водород. Структура триглицеридов
Радикалы R1, R2 и R3 жирных кислот могут быть различны

Жиры, или триглицериды — природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот; входят в класс липидов. В живых организмах выполняют структурную, энергетическую и др. функции.

Наряду с углеводами и белками, жиры — один из главных компонентов питания. Жидкие жиры растительного происхождения обычно называют маслами — так же, как и сливочное масло.

Состав, структура жиров

Состав жиров отвечает общей формуле: CH2-O-C(O)-R¹ | CH-О-C(O)-R² | CH2-O-C(O)-R³, где R¹, R² и R³ — радикалы (иногда различных) жирных кислот.

Природные жиры содержат в своём составе три кислотных радикала, имеющих неразветвлённую структуру и, как правило, чётное число атомов углерода (содержание «нечетных» кислотных радикалов в жирах обычно менее 0,1 %).

Жиры гидрофобны, практически нерастворимы в воде, хорошо растворимы в органических растворителях и частично растворимы в этаноле (5—10 %)[1].

Природные жиры чаще всего содержат следующие жирные кислоты:

Насыщенные:

Ненасыщенные:

Чаще всего в животных жирах встречаются стеариновая и пальмитиновая кислоты, ненасыщенные жирные кислоты представлены в основном олеиновой, линолевой и линоленовой кислотами. Физико-химические и химические свойства жиров в значительной мере определяются соотношением входящих в их состав насыщенных и ненасыщенных жирных кислот.

В растениях жиры содержатся в сравнительно небольших количествах, за исключением семян масличных растений, в которых содержание жиров может быть более 50 %. Насыщенные жиры расщепляются в организме на 25—30 %, а ненасыщенные жиры расщепляются полностью.

Гидролиз жиров

Расщепление жиров на глицерин и жирные кислоты проводится обработкой их щёлочью — (едким натром), перегретым паром, иногда — минеральными кислотами. Этот процесс называется омылением (см. Мыло).

Свойства жиров

Энергетическая ценность жира приблизительно равна 9,1 ккал на грамм, что соответствует 38 кДж/г. Таким образом, энергия, выделяемая при расходовании 1 грамма жира, приблизительно соответствует, с учетом ускорения свободного падения, поднятию груза весом 39000 Н (массой ≈ 3900кг) на высоту 1 метр.

При сильном взбалтывании с водой жидкие (или расплавленные) жиры образуют более или менее устойчивые эмульсии (см. гомогенизация). Природной эмульсией жира в воде является молоко.

Пищевые свойства жиров

Жиры являются одним из основных источников энергии для млекопитающих. Эмульгирование жиров в кишечнике (необходимое условие их всасывания) осуществляется при участии солей жёлчных кислот. Энергетическая ценность жиров примерно в 2 раза выше, чем углеводов, при условии их биологической доступности и здорового усвоения организмом. Жиры выполняют важные структурные функции в составе мембранных образований клетки, в субклеточных органеллах.

Благодаря крайне низкой теплопроводности жир, откладываемый в подкожной жировой клетчатке, служит термоизолятором, предохраняющим организм от потери тепла (у китов, тюленей и др.).

Применение жиров

  • Пищевая промышленность (в частности, кондитерская).
  • Фармацевтика
  • Производство мыла и косметических изделий
  • Производство смазочных материалов

См. также

Примечания

  1. Йоффе, Д. В. Жиры // Химическая энциклопедия. — М.: Советская энциклопедия, 1990 — С. 155—157]

Литература

  • Тютюнников, Б. Н. Химия жиров / Б. Н. Тютюнников, З. И. Бухштаб, Ф. Ф. Гладкий и др. — 3-е изд., перераб. и доп. — М.: Колос, 1992. — 448 с.
  • Беззубов, Л. П. Химия жиров / Л. П. Беззубов. — 3-е изд. — М.: Пищевая промышленность, 1975. — 280 с.
  • Щербаков, В. Г. Химия и биохимия переработки масличных семян / В. Г. Щербаков. — М.: Пищевая промышленность, 1977. — 180 с.
  • Евстигнеева Р. П. Химия липидов / Р. П. Евстигнеева, Е. Н. Звонкова, Г. А. Серебренникова, В. И. Швец. — М.: Химия, 1983. — 296 с., ил.
Плазмозамещающие и перфузионные растворы — АТХ код: B05

 

B05A
Препараты крови
B05B
Растворы для в/в введения
B05C
Ирригационные растворы
B05D
Растворы для перитонеального диализа
B05X
Добавки к растворам для в/в введения
B05Z

Жиры — это… Что такое Жиры?

У этого термина существуют и другие значения, см. Жир. Шариковая модель триглицерида. Красным цветом выделен кислород, чёрным — углерод, белым — водород. Структура триглицеридов
Радикалы R1, R2 и R3 жирных кислот могут быть различны

Жиры, или триглицериды — природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот; входят в класс липидов. В живых организмах выполняют структурную, энергетическую и др. функции.

Наряду с углеводами и белками, жиры — один из главных компонентов питания. Жидкие жиры растительного происхождения обычно называют маслами — так же, как и сливочное масло.

Состав, структура жиров

Состав жиров отвечает общей формуле: CH2-O-C(O)-R¹ | CH-О-C(O)-R² | CH2-O-C(O)-R³, где R¹, R² и R³ — радикалы (иногда различных) жирных кислот.

Природные жиры содержат в своём составе три кислотных радикала, имеющих неразветвлённую структуру и, как правило, чётное число атомов углерода (содержание «нечетных» кислотных радикалов в жирах обычно менее 0,1 %).

Жиры гидрофобны, практически нерастворимы в воде, хорошо растворимы в органических растворителях и частично растворимы в этаноле (5—10 %)[1].

Природные жиры чаще всего содержат следующие жирные кислоты:

Насыщенные:

Ненасыщенные:

Чаще всего в животных жирах встречаются стеариновая и пальмитиновая кислоты, ненасыщенные жирные кислоты представлены в основном олеиновой, линолевой и линоленовой кислотами. Физико-химические и химические свойства жиров в значительной мере определяются соотношением входящих в их состав насыщенных и ненасыщенных жирных кислот.

В растениях жиры содержатся в сравнительно небольших количествах, за исключением семян масличных растений, в которых содержание жиров может быть более 50 %. Насыщенные жиры расщепляются в организме на 25—30 %, а ненасыщенные жиры расщепляются полностью.

Гидролиз жиров

Расщепление жиров на глицерин и жирные кислоты проводится обработкой их щёлочью — (едким натром), перегретым паром, иногда — минеральными кислотами. Этот процесс называется омылением (см. Мыло).

Свойства жиров

Энергетическая ценность жира приблизительно равна 9,1 ккал на грамм, что соответствует 38 кДж/г. Таким образом, энергия, выделяемая при расходовании 1 грамма жира, приблизительно соответствует, с учетом ускорения свободного падения, поднятию груза весом 39000 Н (массой ≈ 3900кг) на высоту 1 метр.

При сильном взбалтывании с водой жидкие (или расплавленные) жиры образуют более или менее устойчивые эмульсии (см. гомогенизация). Природной эмульсией жира в воде является молоко.

Пищевые свойства жиров

Жиры являются одним из основных источников энергии для млекопитающих. Эмульгирование жиров в кишечнике (необходимое условие их всасывания) осуществляется при участии солей жёлчных кислот. Энергетическая ценность жиров примерно в 2 раза выше, чем углеводов, при условии их биологической доступности и здорового усвоения организмом. Жиры выполняют важные структурные функции в составе мембранных образований клетки, в субклеточных органеллах.

Благодаря крайне низкой теплопроводности жир, откладываемый в подкожной жировой клетчатке, служит термоизолятором, предохраняющим организм от потери тепла (у китов, тюленей и др.).

Применение жиров

  • Пищевая промышленность (в частности, кондитерская).
  • Фармацевтика
  • Производство мыла и косметических изделий
  • Производство смазочных материалов

См. также

Примечания

  1. Йоффе, Д. В. Жиры // Химическая энциклопедия. — М.: Советская энциклопедия, 1990 — С. 155—157]

Литература

  • Тютюнников, Б. Н. Химия жиров / Б. Н. Тютюнников, З. И. Бухштаб, Ф. Ф. Гладкий и др. — 3-е изд., перераб. и доп. — М.: Колос, 1992. — 448 с.
  • Беззубов, Л. П. Химия жиров / Л. П. Беззубов. — 3-е изд. — М.: Пищевая промышленность, 1975. — 280 с.
  • Щербаков, В. Г. Химия и биохимия переработки масличных семян / В. Г. Щербаков. — М.: Пищевая промышленность, 1977. — 180 с.
  • Евстигнеева Р. П. Химия липидов / Р. П. Евстигнеева, Е. Н. Звонкова, Г. А. Серебренникова, В. И. Швец. — М.: Химия, 1983. — 296 с., ил.
Плазмозамещающие и перфузионные растворы — АТХ код: B05

 

B05A
Препараты крови
B05B
Растворы для в/в введения
B05C
Ирригационные растворы
B05D
Растворы для перитонеального диализа
B05X
Добавки к растворам для в/в введения
B05Z

Жирные кислоты

В природе обнаружено свыше 200 жирных кислот, которые входят в состав липидов микроорганизмов, растений и животных.

Жирные кислоты – алифатические карбоновые кислоты (рисунок 2). В организме могут находиться как в свободном состоянии, так и выполнять роль строительных блоков для большинства классов липидов.

Все жирные кислоты, входящие в состав жиров, делят на две группы: насыщенные и ненасыщенные. Ненасыщенные жирные кислоты, имеющие две и более двойных связей, называют полиненасыщенными. Природные жирные кислоты весьма разнообразны, однако имеют ряд общих черт. Это монокарбоновые кислоты, содержащие линейные углеводородные цепи. Почти все они содержат четное число атомов углерода (от 14 до 22, чаще всего встречаются с 16 или 18 атомами углерода). Гораздо реже встречаются жирные кислоты с более короткими цепями или с нечетным числом атомов углерода. Содержание ненасыщенных жирных кислот в липидах, как правило, выше, чем насыщенных. Двойные связи, как правило, находятся между 9 и 10 атомами углерода, почти всегда разделены метиленовой группой и имеют цис-конфигурацию.

Высшие жирные кислоты практически нерастворимы в воде, но их натриевые или калиевые соли, называемые мылами, образуют в воде мицеллы, стабилизируемые за счет гидрофобных взаимодействий. Мыла обладают свойствами поверхностно-активных веществ.

Жирные кислоты отличаются:

– длиной их углеводородного хвоста, степенью их ненасыщенности и положением двойных связей в цепях жирных кислот;

– физико-химическими свойствами. Обычно насыщенные жирные кислоты при температуре 22 0С имеют твердую консистенцию, тогда как ненасыщенные представляют собой масла.

Ненасыщенные жирные кислоты имеют более низкую температуру плавления. Полиненасыщенные жирные кислоты быстро окисляются на открытом воздухе, чем насыщенные. Кислород реагирует с двойными связями с образованием пероксидов и свободных радикалов;

Таблица 1 – Основные карбоновые кислоты, входящие в состав липидов

Число

С-атомов

Число двойных связей

Наименование кислоты

Структурная формула

Насыщенные

12

14

16

18

20

0

0

0

0

0

Лауриновая

Миристиновая

Пальмитиновая

Стеариновая

Арахиновая

СН3–(СН2)10–СООН

СН3–(СН2)12–СООН

СН3–(СН2)14–СООН

СН3–(СН2)16–СООН

СН3–(СН2)18–СООН

Ненасыщенные

18

18

18

20

1

2

3

4

Олеиновая

Линолевая

Линоленовая

Арахидовая

СН3–(СН2)7–СН=СН–(СН2)7–СООН

СН3–(СН2)4–(СН=СН–СН2)2–(СН2)6–СООН

СН3–СН2–(СН=СН–СН2)3–(СН2)6–СООН

СН3–(СН2)4–(СН=СН–СН2)4–(СН2)2–СООН

В высших растениях присутствуют, в основном, пальмитиновая кислота и две ненасыщенные кислоты – олеиновая и линолевая. Доля ненасыщенных жирных кислот в составе растительных жиров очень высока (до 90 %), а из предельных лишь пальмитиновая кислота содержится в них в количестве 10-15 %.

Стеариновая кислота в растениях почти не встречается, а содержится в значительном количестве (25 % и более) в некоторых твердых животных жирах (жир баранов и быков) и маслах тропических растений (кокосовое масло). Лауриновой кислоты много в лавровом листе, миристиновой – в масле мускатного ореха, арахиновой и бегеновой – в арахисовом и соевом маслах. Полиненасыщенные жирные кислоты – линоленовая и линолевая – составляют главную часть льняного, конопляного, подсолнечного, хлопкового и некоторых других растительных масел. Жирные кислоты оливкового масла на 75% представлены олеиновой кислотой.

В организме человека и животных не могут синтезироваться такие важные кислоты, как линолевая, линоленовая. Арахидоновая – синтезируется из линолевой. Поэтому они должны поступать в организм с пищей. Эти три кислоты получили название незаменимых жирных кислот. Комплекс этих кислот называют витамином F. При длительном отсутствии их в пище у животных наблюдается отставание в росте, сухость и шелушение кожи, выпадение шерсти. Описаны случаи недостаточности незаменимых жирных кислот и у человека. Так, у детей грудного возраста, получающих искусственное питание с незначительным содержанием жиров, может развиться чешуйчатый дерматит, т.е. проявляются признаки авитаминоза.

В последнее время большое внимание уделяется жирным кислотам Омега-3. Эти кислоты обладают сильным биологическим действием – уменьшают слипание тромбоцитов, тем самым предупреждают инфаркты, снижают артериальное давление, уменьшают воспалительные процессы в суставах (артриты), необходимы для нормального развития плода у беременных. Эти жирные кислоты содержатся в жирных сортах рыб (скумбрия, лосось, семга, норвежская сельдь). Рекомендуется употреблять морскую рыбу 2-3 раза в неделю.

Номенклатура жиров

Нейтральные ацилглицеролы служат главными составными частями природных жиров и масел, чаще всего это смешанные триацилглицеролы. По происхождению природные жиры делят на животные и растительные. В зависимости от жирно-кислотного состава жиры и масла по консистенции бывают жидкими и твердыми. Животные жиры (баранье, говяжье, свиное сало, молочный жир) обычно содержат значительное количество насыщенных жирных кислот (пальмитиновой, стеариновой и др.), благодаря чему при комнатной температуре они твердые.

Жиры, в состав которых входит много ненасыщенных кислот (олеиновая, линолевая, линоленовая и др.), при обычной температуре жидкие и называются маслами.

Жиры, как правило, содержатся в животных тканях, масла – в плодах и семенах растений. Особенно высоко содержание масел (20-60 %) в семенах подсолнечника, хлопчатника, сои, льна. Семена этих культур используются в пищевой промышленности для получения пищевых масел.

По способности высыхать на воздухе масла подразделяются: на высыхающие (льняное, конопляное), полувысыхающие (подсолнечное, кукурузное), невысыхающие (оливковое, касторовое).

Физические свойства

Жиры легче воды и нерастворимы в ней. Хорошо растворимы в органических растворителях, например, в бензине, диэтиловом эфире, хлороформе, ацетоне и т.д. Температура кипения жиров не может быть определена, поскольку при нагревании до 250оС они разрушаются с образованием из глицерина при его дегидратации сильно раздражающего слизистые оболочки глаз альдегида  акролеина (пропеналя).

Для жиров прослеживается довольно четкая связь химического строения и их консистенции. Жиры, в которых преобладают остатки насыщенных кислот – твёрдые (говяжий, бараний и свиной жиры). Если в жире преобладают остатки ненасыщенных кислот, он имеет жидкую консистенцию. Жидкие растительные жиры называется маслами (подсолнечное, льняное, оливковое и т.д. масла). Организмы морских животных и рыбы содержат жидкие животные жиры. В молекулы жиров мазеобразной (полутвёрдой) консистенции входят одновременно остатки насыщенных и ненасыщенных жирных кислот (молочный жир).

Химические свойства жиров

Триацилглицеролы способны вступать во все химические реакции, свойственные сложным эфирам. Наибольшее значение имеет реакция омыления, она может происходить как при ферментативном гидролизе, так и при действии кислот и щелочей. Жидкие растительные масла превращают в твердые жиры при помощи гидрогенизации. Этот процесс широко используется для изготовления маргарина и кулинарного жира.

Жиры при сильном и продолжительном взбалтывании с водой образуют эмульсии – дисперсные системы с жидкой дисперсной фазой (жир) и жидкой дисперсионной средой (водой). Однако эти эмульсии нестойки и быстро разделяются на два слоя – жир и воду. Жиры плавают над водой, поскольку их плотность меньше плотности воды (от 0,87 до 0,97).

Гидролиз. Среди реакций жиров особое значение имеет гидролиз, который можно осуществить как кислотами, так и основаниями (щелочной гидролиз называют омылением):

Омыляемые липиды 2

Простые липиды 2

Жирные кислоты 3

Химические свойства жиров 6

АНАЛИТИЧЕСКАЯ ХАРАКТЕРИСТИКА ЖИРОВ 11

Сложные липиды 14

Фосфолипиды 14

Мыла и детергенты 16

Гидролиз жиров идет постепенно; например, при гидроли­зе тристеарина получается сначала дистеарин, затем моносте­арин и, наконец, глицерин и стеариновая кислота.

Практически гидролиз жиров производят или перегретым паром, или же нагреванием в присутствии серной кислоты или щелочей. Превосходными катализаторами гидролиза жиров являются сульфокислоты, получаемые сульфированием смеси непредельных жирных кислот с ароматическими углеводоро­дами (контакт Петрова). В семенах клещевины находится особый фермент — липаза, ускоряющий гидролиз жиров. Ли­паза широко применяется в технике для каталитического гид­ролиза жиров.

Химические свойства

Химические свойства жиров определяются сложноэфирным строением молекул триглицеридов и строением и свойствами углеводородных радикалов жирных кислот, остатки которых входят в состав жира.

Как сложные эфиры жиры вступают, например, в следующие реакции:

– Гидролиз в присутствии кислот (кислотный гидролиз)

Гидролиз жиров может протекать и биохимическим путем под действием фермента пищеварительного тракта липазы.

Гидролиз жиров может медленно протекать при длительном хранении жиров в открытой упаковке или термической обработке жиров в условиях доступа паров воды из воздуха. Характеристикой накопления в жире свободных кислот, придающих жиру горечь и даже токсичность является «кислотное число»: число мг КОН, пошедшее на титрование кислот в 1г жира.

Омыление:

Наиболее интересными и полезными реакциями углеводородных радикалов являются реакции по двойным связям:

Гидрогенизация жиров

Растительные масла (подсолнечное, хлопковое, соевое) в присутствии катализаторов (например, губчатый никель) при 175-190оС и давлении 1,5-3 атм гидрируются по двойным С = С связям углеводородных радикалов кислот и превращаются в твёрдый жир – саломас. При добавлении к нему так называемых отдушек для придания соответствующего запаха и яиц, молока, витаминов для улучшения питательных качеств получают маргарин. Саломас используется также в мыловарении, фармации (основы для мазей), косметике, для изготовления технических смазок и т.д.

Присоединение брома

Степень ненасыщенности жира (важная технологическая характеристика) контролируется по «йодному числу»: число мг йода, пошедшее на титрование 100 г жира в процентах (анализ с бисульфитом натрия).

Окисление

Окисление перманганатом калия в водном растворе приводит к образованию предельных дигидроксикислот (реакция Вагнера)

ПРОГОРКАНИЕ

При хранении растительные масла, животные жиры, а также жиросодержащие продукты (мука, крупа, кондитерские изделия, мясные продукты) под влиянием кислорода воздуха, света, ферментов, влаги приобретают неприятный вкус и запах. Иными словами, жир прогоркает.

Прогоркание жиров и жиросодержащих продуктов ­– результат сложных химических и биохимических процессов, протекающих в липидном комплексе.

В зависимости от характера основного процесса, протекающего при этом, различают гидролитическое и окислительное прогоркание. Каждый из них может быть разделен на автокаталитическое (неферментативное) и ферментативное (биохимическое) прогоркание.

ГИДРОЛИТИЧЕСКОЕ ПРОГОРКАНИЕ

При гидролитическом прогоркании происходит гидролиз жира с образованием глицерина и свободных жирных кислот.

Неферментативный гидролиз протекает с участием растворенной в жире воды, и скорость гидролиза жира при обычных температурах невелика. Ферментативный гидролиз происходит при участии фермента липазы на поверхности соприкосновения жира и воды и возрастает при эмульгировании.

В результате гидролитического прогоркания увеличивается кислотность, появляется неприятный вкус и запах. Особенно это сильно выражено при гидролизе жиров (молочного, кокосового и пальмового), содержащих низко- и среднемолекулярные кислоты, такие как масляную, валериановую, капроновую. Высокомолекулярные кислоты не имеют вкуса и запаха, а повышение их содержания не приводит к изменению вкуса масел.

ОКИСЛИТЕЛЬНОЕ ПРОГОРКАНИЕ

Наиболее распространенным видом порчи жиров в процессе хранения является окислительное прогоркание. В первую очередь окислению подвергаются свободные, а не связанные в триацилглицеролах ненасыщенные жирные кислоты. Процесс окисления может происходить неферментативным и ферментативным путями.

В результате неферментативного окисления кислород присоединяется к ненасыщенным жирным кислотам по месту двойной связи с образованием циклической перекиси, которая распадается с образованием альдегидов, придающих жиру неприятный запах и вкус:

Также в основе неферментативного окислительного прогоркания лежат цепные радикальные процессы, в которых участвуют кислород и ненасыщенные жирные кислоты.

Под действием перекисей и гидроперекисей (первичных продуктов окисления) происходит дальнейший распад жирных кислот и образование вторичных продуктов окисления (карбонилсодержащих): альдегидов, кетонов и других неприятных на вкус и запах веществ, вследствие чего жир прогоркает. Чем больше двойных связей в жирной кислоте, тем выше скорость ее окисления.

При ферментативном окислении этот процесс катализируется ферментом липоксигеназой с образованием гидроперекисей. Действие липоксигеназы сопряжено с действием липазы, которая предварительно гидролизует жир.

АНАЛИТИЧЕСКАЯ ХАРАКТЕРИСТИКА ЖИРОВ

Кроме температуры плавления и затвердевания, для ха­рактеристики жиров применяются следующие величины: кислотное число, перекисное число, число омыления, йодное число.

Природные жиры нейтральны. Однако при переработке или хранении вследствие процессов гидролиза или окисления образуются свободные кислоты, количество которых непостоянно

Под действием ферментов липазы и липоксигеназы изменяется качество жиров и масел, которое характеризуется следующими показателями или числами:

Кислотное число (К.ч.) – это количество миллиграммов гидроксида калия, необходимого для нейтрализации свободных жирных кислот в 1 г жира.

При хранении масла наблюдается гидролиз триацилглицеролов, это приводит к накоплению свободных жирных кислот, т.е. к возрастанию кислотности. Повышение К.ч. указывает на снижение его качества. Кислотное число является гостированным показателем масла и жира.

Йодное число (Й.ч.) – это количество граммов йода, присоединившегося по месту двойных связей к 100 г жира:

Йодное число позволяет судить о степени ненасыщенности масла (жира), о склонности его к высыханию, прогорканию и другим изменениям, происходящим при хранении. Чем больше содержится в жире ненасыщенных жирных кислот, тем выше йодное число. Уменьшение йодного числа в процессе хранения масла является показателем его порчи. Для определения йодного числа применяют растворы хлорида иода IC1, бромида иода IBr или иода в растворе сулемы, которые бо­лее реакционноспособны, чем сам иод. Йодное число является мерой ненасыщенности кислот жиров. Оно важно для оценки качества высыхающих масел.

Перекисное число (П.ч.) показывает количество перекисей в жире, выражают его в процентах йода, выделенного из йодистого калия перекисями, образовавшимися в 1 г жира.

В свежем жире перекиси отсутствуют, но при доступе воздуха они появляются сравнительно быстро. В процессе хранения перекисное число увеличивается.

Число омыления (Ч.о.) – равно числу миллиграммов гидроксида калия, расходующихся при омылении 1 г жира кипячением последнего с избытком гидроксида калия в спиртовом раство­ре. Число омыления чистого триолеина равно 192. Высокое число омыления указывает на присутствие кислот с «меньши­ми молекулами». Малые числа омыления указывают на при­сутствие более высокомолекулярных кислот или же неомыляемых веществ.

Полимеризация масел. Весьма важными являются ре­акции автоокисления и полимеризации масел. По этому при­знаку растительные масла делятся на три категории: высы­хающие, полувысыхающие и невысыхающие.

Высыхающие масла в тонком слое обладают способностью образовывать на воздухе эластичные, блестящие, гибкие и прочные пленки, нерастворимые в органических растворите­лях, устойчивые к внешним воздействиям. На этом свойстве основано использование этих масел для приготовления лаков и красок. Наиболее часто применяемые высыхающие масла приведены в табл. 34.

Таблица 34. Характеристики высыхающих масел

Масло

Йодное число

Содержание жирных кислот, %

паль­мити­новая

стеа­рино­вая

олеи­новая

лино- левая

лино- лено- вая

элео- стеари- новая

Тунговое

160—180

4,0

1,5

15,0

79,5

Льняное

170—185

5,0

3,5

5,0

61,5

25,0

Периллевое

180—206

7,5

8,0

38,0

46,5

Основной характерной чертой высыхающих масел являет­ся высокое содержание непредельных кислот. Для оценки ка­чества высыхающих масел применяют йодное число (оно дол­жно быть не менее 140).

Процесс высыхания масел заключается в окислительной полимери­зации. Все ненасыщенные эфиры жирных кислот и их глицериды окис­ляются на воздухе. По-видимому, процесс окисления представляет собой цепную реакцию, приводящую к неустойчивой гидроперекиси, которая разлагается с образованием окси- и кетокислот.

Высыхающие масла, содержащие глицериды ненасыщенных кислот с двумя или тремя двойными связями, служат для приготовления оли­фы. Для получения олифы льняное масло нагревают до 250—300 °С в присутствии катализаторов.

Полу высыхающие масла (подсолнечное, хлопковое) отличаются от высыхающих меньшим содержанием непредельных кислот (йодное чис­ло 127—136).

Невысыхающие масла (оливковое, миндальное) имеют йодное число ниже 90 (например, для оливкового масла 75—88).

Воски

Это сложные эфиры высших жирных кислот и высших одноатомных спиртов жирного (реже ароматического) ряда.

Воски являются твердыми соединениями с ярко выраженными гидрофобными свойствами. Природные воски содержат также некоторое количество свободных жирных кислот и высокомолекулярных спиртов. В состав восков входят как обычные, содержащиеся в жирах, – пальмитиновая, стеариновая, олеиновая и др., так и жирные кислоты, характерные для восков, имеющие гораздо большие молекулярные массы, – карноубовая С24Н48О2, церотиновая С27Н54О2, монтановая С29Н58О2 и др.

Среди высокомолекулярных спиртов, входящих в состав восков, можно отметить цетиловый – СН3–(СН2)14–СН2ОН, цериловый – СН3–(СН2)24–СН2ОН, мирициловый СН3–(СН2)28–СН2ОН.

Воски встречаются как в животных, так и в растительных организмах и выполняют, главным образом, защитную функцию.

В растениях они покрывают тонким слоем листья, стебли и плоды, тем самым, предохраняя их от смачивания водой, высыхания, механических повреждений и поражения микроорганизмами. Нарушение этого налета приводит к быстрой порче плодов при их хранении.

Например, значительное количество воска выделяется на поверхности листьев пальмы, произрастающей в Южной Америке. Этот воск, называемый карноубским, является, в основном, церотиново-мирициловым эфиром:

,

имеет желтый или зеленоватый цвет, очень тверд, плавится при температуре 83-900С, идет на выделку свечей.

Среди животных восков наибольшее значение имеет пчелиный воск, под его покровом хранится мед и развиваются личинки пчелы. В пчелином воске преобладает пальмитиново-мирициловый эфир:

,

а также высокое содержание высших жирных кислот и различных углеводородов, плавится пчелиный воск при температуре 62-700С.

Другими представителями воска животных является ланолин и спермацет. Ланолин предохраняет волосы и кожу от высыхания, очень много его содержится в овечьей шерсти.

Спермацет – воск, добывающий из спермацетового масла черепных полостей кашалота, состоит, в основном, (на 90%) из пальмитиново-цетилового эфира:

твердое вещество, его температура плавления 41-490С.

Различные воска широко применяют для изготовления свечей, помад, мыла, разных пластырей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *