Разное

Полисахариды свойства и функции: что это такое — физические и химические свойства, примеры веществ, которые к ним относятся — moloko-chr.ru – Полисахариды | Химия онлайн

Дисахариды и полисахариды

Так же, как и моносахариды, широкое распространение в природе имеют и дисахариды – всем известная сахароза (тростниковый или свекловичный сахар), лактоза (молочный сахар), мальтоза (солодовый сахар).

Сам термин «дисахарид» сообщает нам о двух остатках моносахаридов, связанных между собой в молекулах этих органических соединений, получение которых возможно путем гидролиза (разложением водой) молекулы дисахарида.

Дисахариды – углеводы, молекулы которых состоят из двух остатков моносахаридов, которые соединены друг с другом за счет взаимодействия  двух гидроксильных групп.

В процессе образования молекулы дисахарида происходит отщепление одной молекулы воды:

 01              

или для сахарозы:

 02

Поэтому молекулярная формула дисахаридов С12H22O11.

Образование сахарозы происходит в клетках растений под воздействием ферментов. Но химики нашли способ осуществления многих реакций, являющихся частью процессов, которые происходят в живой природе. В 1953 году французский химик Р. Лемье впервые осуществил синтез сахарозы, названный современниками «покорением Эвереста органической химии».

В промышленности сахароза получается из сока сахарного тростника (содержание 14-16%),  сахарной свеклы (16-21%), а также некоторых других растений, таких как канадский клен или земляная груша.

Всем известно, что сахароза представляет из себя кристаллическое вещество, которое имеет сладкий вкус и хорошо растворимо в воде.

Сок сахарного тростника содержит углевод сахароза, привычно называемый нами сахаром.

Имя немецкого химика и металлурга А. Маргграфа тесно связано с производством сахара из свеклы. Он был одним из первых исследователей, применивших в своих химических исследованиях микроскоп, при помощи которого им были обнаружены кристаллы сахара в свекольном соке в 1747 году.

Лактоза – кристаллический молочный сахар, была получена из молока млекопитающих еще в XVII в.  Лактоза является менее сладким дисахаридом, нежели сахароза.

Теперь ознакомимся с углеводами, имеющими более сложное строение – полисахаридами.

Полисахариды  – высокомолекулярные углеводы,  молекулы которых состоят из множества моносахаридов.

В упрощенном виде общая схема может быть представлена так:

 03

Теперь сравним строение и свойства  крахмала и целлюлозы – важнейших представителей полисахаридов.

Структурное звено полимерных цепей этих полисахаридов, формула которых (С6H10O5)n

, – это остатки глюкозы. Для того, чтобы записать состав структурного звена (С6H10O5), нужно отнять молекулу воды из формулы глюкозы.

Целлюлоза и крахмал имеют растительное происхождение. Они образуются из молекул глюкозы в результате поликонденсации.

Уравнение реакции поликонденсации, а также обратного ей процесса гидролиза для полисахаридов условно можно записать следующим образом:

 04

Молекулы крахмала могут иметь как линейный, так и разветвленный тип строения, молекулы целлюлозы – только линейный.

При взаимодействии с йодом крахмал, в отличие от целлюлозы, дает синее окрашивание.
Различные функции эти полисахариды имеют и в растительной клетке. Крахмал служит запасным питательным веществом, целлюлоза выполняет структурную, строительную функцию. Стенки растительных клеток построены из целлюлозы.

Остались вопросы? Не знаете, как сделать домашнее задание?

Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Полисахариды — это… Что такое Полисахариды?

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов.

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Они являются одним из основных источников энергии, образующейся в результате обмена веществ организма. Они принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Классификация полисахаридов

К полисахаридам относятся вещества, построенные из большого числа остатков моносахаридов или их производных. Если полисахарид содержит остатки моносахарида одного вида, его называют гомополисахаридом. В том случае, когда полисахарид составлен из моносахаридов двух видов или более, регулярно или нерегулярно чередующихся в молекуле, его относят к гетерополисахаридам.

К полисахаридам относятся, в частности:

  • декстрин — полисахарид, продукт гидролиза крахмала;
  • крахмал — основной полисахарид, откладываемый как энергетический запас у растительных организмов;
  • гликоген — полисахарид, откладываемый как энергетический запас в клетках животных организмов, но встречается в малых количествах и в тканях растений;
  • целлюлоза — основной структурный полисахарид клеточных стенок растений;
  • хитин — основной структурный полисахарид экзоскелета насекомых и членистоногих, а также клеточных стенок грибов;
  • галактоманнаны — запасные полисахариды некоторых растений семейства бобовых, такие как гуаран и камедь рожкового дерева;
  • инулин — резервный углерод сложноцветных;
  • глюкоманнан — полисахарид, получаемый из клубней конняку, состоит из чередующихся звеньев глюкозы и маннозы, растворимое пищевое волокно, уменьшающее аппетит;
  • амилоид — применяется при производстве пергаментной бумаги;
  • многоглюкоза — многоконечный продукт гидролиза большинства многосахаридов.

Функциональные свойства

Структурные полисахариды придают клеточным стенкам прочность.

Водорастворимые полисахариды не дают клеткам высохнуть.

Резервные полисахариды по мере необходимости расщепляются на моносахариды и используются организмом.

Литература

  • Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M Essentials of glycobiology. — Cold Spring Harbor Laboratory Press; 2nd edition, 2008. — ISBN 0-87969-770-9
  • Varki A, Cummings R, Esko J, Jessica Freeze, Hart G, Marth J Essentials of glycobiology. — Cold Spring Harbor Laboratory Press, 1999. — ISBN 0-87969-560-9
 Просмотр этого шаблона Углеводы
Общие: Альдозы · Кетозы · Фуранозы · Пиранозы
Геометрия Аномеры · Мутаротация · Проекция Хоуорса
Моносахариды
Диозы Альдодиоза (Гликольальдегид)
Триозы Кетотриоза (Дигидроксиацетон) · Альдотриоза (Глицеральдегид)
Тетрозы Кетотетроза (Эритрулоза) · Альтотетрозы (Эритроза, Треоза)
Пентозы Кетопентозы (Рибулоза, Ксилулоза)

Альдопентозы (Рибоза, Арабиноза, Ксилоза, Ликсоза)

Дезоксисахариды (Дезоксирибоза)
Гексоза Кетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)
Гептозы Кетогептозы (Седогептулоза, Манногептулоза)
>7 Октозы · Нанозы (Нейраминовая кислота)
Мультисахариды
Производные углеводов

Полисахариды — это… Что такое Полисахариды?

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов.

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Они являются одним из основных источников энергии, образующейся в результате обмена веществ организма. Они принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Классификация полисахаридов

К полисахаридам относятся вещества, построенные из большого числа остатков моносахаридов или их производных. Если полисахарид содержит остатки моносахарида одного вида, его называют гомополисахаридом. В том случае, когда полисахарид составлен из моносахаридов двух видов или более, регулярно или нерегулярно чередующихся в молекуле, его относят к гетерополисахаридам.

К полисахаридам относятся, в частности:

  • декстрин — полисахарид, продукт гидролиза крахмала;
  • крахмал — основной полисахарид, откладываемый как энергетический запас у растительных организмов;
  • гликоген — полисахарид, откладываемый как энергетический запас в клетках животных организмов, но встречается в малых количествах и в тканях растений;
  • целлюлоза — основной структурный полисахарид клеточных стенок растений;
  • хитин — основной структурный полисахарид экзоскелета насекомых и членистоногих, а также клеточных стенок грибов;
  • галактоманнаны — запасные полисахариды некоторых растений семейства бобовых, такие как гуаран и камедь рожкового дерева;
  • инулин — резервный углерод сложноцветных;
  • глюкоманнан — полисахарид, получаемый из клубней конняку, состоит из чередующихся звеньев глюкозы и маннозы, растворимое пищевое волокно, уменьшающее аппетит;
  • амилоид — применяется при производстве пергаментной бумаги;
  • многоглюкоза — многоконечный продукт гидролиза большинства многосахаридов.

Функциональные свойства

Структурные полисахариды придают клеточным стенкам прочность.

Водорастворимые полисахариды не дают клеткам высохнуть.

Резервные полисахариды по мере необходимости расщепляются на моносахариды и используются организмом.

Литература

  • Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M Essentials of glycobiology. — Cold Spring Harbor Laboratory Press; 2nd edition, 2008. — ISBN 0-87969-770-9
  • Varki A, Cummings R, Esko J, Jessica Freeze, Hart G, Marth J Essentials of glycobiology. — Cold Spring Harbor Laboratory Press, 1999. — ISBN 0-87969-560-9
 Просмотр этого шаблона Углеводы
Общие: Альдозы · Кетозы · Фуранозы · Пиранозы
Геометрия Аномеры · Мутаротация · Проекция Хоуорса
Моносахариды
Диозы Альдодиоза (Гликольальдегид)
Триозы Кетотриоза (Дигидроксиацетон) · Альдотриоза (Глицеральдегид)
Тетрозы Кетотетроза (Эритрулоза) · Альтотетрозы (Эритроза, Треоза)
Пентозы Кетопентозы (Рибулоза, Ксилулоза)

Альдопентозы (Рибоза, Арабиноза, Ксилоза, Ликсоза)

Дезоксисахариды (Дезоксирибоза)
Гексоза Кетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)
Гептозы Кетогептозы (Седогептулоза, Манногептулоза)
>7 Октозы · Нанозы (Нейраминовая кислота)
Мультисахариды
Производные углеводов

2.3. Строение, свойства и биологические функции полисахаридов.

Молекулы полисахаридов включают десятки, сотни и даже ты­сячи моносахаридных остатков, соединенных такими же глико­зидными связями, как и в составе олигосахаридов. Большинство из них образуют линейные полимеры, формирующие определённую пространственную структуру, однако некоторые полисахариды имеют разветвлённые молекулы. Моносахаридные остатки в составе полисахаридов находятся в циклической форме в виде α- или b-стереоизомеров.

Большинство полисахаридов представляют собой сложные углеводы, построенные из многократно повторяющихся остатков одного моносахарида. Однако известны полисахариды, молекулы которых состоят из остатков разных моносахаридов.

По выполняемым функциям различают запасные и структурные полисахариды. Запасные — откладываются в клетках листьев или запасающих тканей в виде упорядоченных структур — гранул. Структурные — участвуют в построении клеточных стенок растений.

Крахмал. Крахмал — основное запасное вещество растений, представляю­щее собой смесь двух полисахаридов — амилозы и амилопектuна, различающихся по строению молекулы и физико-химическим свойствам. Однако молекулы этих полисахаридов построены из одного моносахарида — α-D-глюкозы, находящейся в пиранозной форме.

В молекулах амилозы остатки a-D-глюкозы соединены а(1®4)-связями, образуя спиралевидно закрученные цепо­чечные структуры, включающие от 100 до 1-2 тыс. глюкозных остатков (рис. 1). Молекулярная масса амилозы обычно составляет от 20 до 500 тыс. Спиралевид­ное закручивание молекулы происходит вследствие образования водородных связей между остатками глюкозы, нахо­дящимися в соседних витках. В каждом витке амилозы содержится шесть пира­нозных cтpyктyp, соединённых в цепочку гликозидными связями.

Амилоза растворяется в теплой воде и при добавлении водного раствора йода в йодистом калии окрашивается в синий цвет вследст­вие того, что йод образует комплeксы с остатками глюкозы. Водные растворы амилозы не отличаются высокой вязкостью и при стоянии довольно быстро образуют кристаллический осадок.

Амилопектин имеет разветвлённые молекулы, построенные из α-D-глюкозы. В точках ветвления гликозидные связи образуются между первым и шестым углеродными атомами глюкозных остатков (α(I®6)-связи). Между точками ветвления глюкозные остатки так же, как в амилозе, соединены α(I®4)-связями.

Точки ветвления в молекулах амилопектина имеются через каждые 12-15 остатков глюкозы. Молекулярная масса амилопек­тина значительно больше, чем у амилозы, и может достигать 1 млн. Схема строения молекулы амилопектина показана на рисунке 2.

Амилопектин в тёплой воде не растворяется, а при более силь­ном нагревании с водой образует очень вязкий коллоидный раствор — клейстер. Температура клейстеризации картофельного и ржаного крахмала 55-65°С, пшеничного и кукурузного — 60-70°С, крахмала риса — 70-80°C. Йодом амилопектин окрашивается в красно­-фиолетовый цвет. В амилопектине в небольшом количестве содер­жатся остатки фосфорной кислоты, соединённые эфирной связью с остатками глюкозы.

Соотношение амилозы и амилопектина в различных раститель­ных продуктах изменяется в очень широких пределах. В карто­фельном крахмале на долю амилозы приходится около 20%, пше­ничном и кукурузном — около 25%, рисовом — 15-20%, в крахмале гороха и некоторых сортов кукурузы — 50-80%. Крахмал яблок почти полностью состоит из амилозы, а крахмал восковидных сортов кукурузы — только из амилопектина.

У одного и того же вида растений содержание амилозы и ами­лопектина в крахмале может изменяться в зависимости от фазы развития и условий внешней среды. В разных органах растений синтезируется крахмал совершенно определенного состава. Так, например, в крахмале клубней картофеля обычно содержится 19-22% амилозы, а в молодых побегах в два раза больше.

В растениях крахмал образуется в листьях как продукт фото­синтеза, а также в зерновках и семенах, клубнях, корневищах, утол­щенных частях стеблей как запасное вещество. Фотосинтетический крахмал откладывается в хлоропластах в виде гранул, называемых крахмальными зёрнами, и довольно быстро используется в процессе дыхания и для синтеза других веществ. Значительная его часть превращается в транспортную форму углеводов — сахарозу, которая по флоем­ной системе поступает в нефотосинтезирующие органы, распа­дается там до глюкозы и фруктозы и в виде моносахаридов вклю­чается в различные биосинтетические процессы.

Запасной крахмал также откладывается в виде зёрен и у целого ряда растений накапливается в значительном количестве в запаса­ющих тканях и органах. В зерне злаковых его содержание обычно составляет 50-70%, в рисе -75-80%, в зерне зернобобовых куль­тур — 30-50%, в клубнях картофеля — 12-20%, в клубнях батата, ямса и маниока — 20-30%, в листьях растений — до 1-2%.

Крахмальные зёрна чаще всего имеют вид овальных или сферичес­ких частиц (рис. 3), имеющих разную форму и размеры (2-170 мкм). Под микроскопом можно различить их слоистое строение. Разме­ры и строение крахмальных зёрен у разных видов и даже сортов растений имеют характерную специфику и могут использовать­ся для идентификации генотипов, а также обнаружения примесей одного растительного продукта в другом.

Запасной крахмал вначале откладывается в пластидах, назы­ваемых амилопластами. По мере наполнения происходит посте­пенная деградация их мембранной структуры и они превращаются в крахмальные зерна.

Крахмалоносные растения представляют легковозобновляемое сырье для перерабатывающей промышленности, которое исполь­зуется для получения продовольственного и технического крахма­ла, глюкозы, этилового спирта и даже пластмасс, обладающих высокой прочностью и экологической безопасностью (при сгорании не дают ядовитых выделений).

Полифруктозиды. В растениях семейств лилейные, мятликовые, астровые, коло­кольчиковые синтезируются запасные углеводы, построенные из 4-40 остатков b-D-фруктозы, в связи с чем их называют поли­фруктозидами, или фруктанами. Остатки фруктозы в их молекулах соединены гликозидными связями, образующимися между вторым и первым углеродными атомами (b (1®2)-связи).

Полифрутозиды содержатся в листьях, корнях, семенах ука­занных выше растений, накапливаются в значительном количестве в нижней утолщённой части стеблей мятликовых трав (до 6-8% сухой массы) и в созревающих зерновках злаковых культур (рожь, пшеница, ячмень, овёс). В листьях они являются основными продуктами фотосинтеза, тогда как фотосинтетический крахмал у этих растений не образуется.

Из полифруктозидов наиболее хорошо изучен инулин, содер­жащий в молекуле 37-44 фруктозных остатка. К одному из концов молекулы инулина присоединён остаток α-D-глюкозы. Молекуляр­ная масса инулина 5-6 тыс. Он хорошо растворяется в горячей воде, не обладает восстановительными свойствами, хорошо усваи­вается организмами человека и животных, в связи с чем растения, способные накапливать инулин, используются как кормовые куль­туры и как сырьё для промышленного получения фруктозы. Фруктозу получают из инулина путём его кислотного гидролиза.

Большое количество инулина содер­жится в клубнях георгина и артишо­ка (до 50%), топинамбура (10-12%), корнях цикория (свыше 10%). В чесно­ке общее содержание полифруктозидов достигает 20-30% и половину из них составляет инулин.

Целлюлоза. Целлюлоза, или клетчатка — довольно устойчивое вещество волокнистого строения, не растворяется в воде и органических растворителях, однако хорошо растворимо в аммиачном растворе гидроксида меди (реактив Швейцера). Молекулы целлюлозы состоят из остатков bD-глюкозы, соединенных b(1®4)-связями. В каждой молекуле целлюлозы может содержаться 1500-10000 пиранозных остатков bD-глюкозы, образующих неразветвлённый полимер.

Между линейно вытянутыми молекулами целлюлозы, имею­щими свободные гидроксильные группы, возникают водородные связи, с помощью которых нитевидные полимеры, построенные из остатков глюкозы, объединяются в пучки, включающие несколько десятков молекул. Такие целлюлозные пучки, или фибриллы, обла­дают очень высокой прочностью и служат структурной основой клеточных стенок растений. Как видно на электронной микро­фотографии клеточной оболочки (рис. 4), целлюлозные фибриллы размещаются слоями, образуя сетчатую структуру, сквозь которую свободно проникает вода с растворенными в ней веществами.

Целлюлоза в том или ином количестве содержится во всех растительных тканях. Особенно много целлю­лозы в растительных волокнах (хлопковом, льняном) — 80-95%, древесине и соломе — 40-50%. В других растительных продуктах её значительно меньше: зерно злаковых и зернобобовых культур – 2-6%, зерно пленчатых злаков — 7-14%, семена масличных — 5-25%, клубни картофеля — около 1 %, корнеплоды — 0,5-1,5%, овощи ­0,5-1,2% (томаты — 0,2%), плоды и ягоды — 0,5-2%, вегетативная масса кормовых трав — 20-30% (последний показатель — в расчёте на сухую массу).

Целлюлоза практически не усваивается организмами человека и нежвачных животных, тогда как жвачные животные способны её усваивать с помощью ферментов микроорганизмов, обитаю­щих в преджелудках этих животных и участвующих в процес­сах пищеварения.

При нагревании с раствором кислоты целлюлоза подвергается гидролизу, превращаясь в глюкозу, которая используется как ис­точник углерода для культивирования дрожжевых клеток с целью промышленного получения этилового спирта и кормовых дрож­жей с повышенным содержанием белков и витаминов. При этом в качестве источника целлюлозы служат отходы древесины и целлюлозосодержащие растительные остатки — солома, корзинки подсолнечника, льняная костра, стержни кукурузных початков, свекловичная меласса, картофельная мезга, хлопковая шелуха и др. Большое количество целлюлозы расходуется для химичес­кой переработки.

В построении клеточных стенок растений наряду с целлюло­зой участвуют также другие структурные полисахариды — геми­целлюлозы и пектиновые вещества, которые связаны с молекулами целлюлозы водородными связями.

Гемицеллюлозы. Гемицеллюлозы — это смесь полисахаридов, образу-ющих при гидролизе маннозу, галактозу, ксилозу, арабинозу и уроновые кислоты — глюкуроновую и галактуроновую. Они нерастворимы в воде, но растворяются в щелочных растворах. В клеточных стен­ках растений содержание гемицеллюлоз составляет около 30%. Много их накапливается в древесине и соломе (10-30%), оболочках семян, кукурузных початках, отрубях, вегетативной массе растений. Разные виды растений заметно различаются по составу ге­мицеллюлоз.

ГАЛАКТАНЫ. Их молекулы построены из остатков b-D-­галактозы, соединённых b(1®4)-связями. В каждой молекуле объединяются более 100 остатков галактозы.

Галактаны содержатся в составе клеточных стенок многих растений, особенно много их в семенах люпина.

МАННАНЫ. Остатки маннозы в маннанах соединены b(1®4)-­связями. В каждой молекуле насчитывается от 200 до 400 моно­сахаридных единиц. Много маннанов содержится в древесине хвойных деревьев и в клеточных стенках водорослей.

КСИЛАНЫ. Их молекулы построены из остатков b-D-ксилозы в пиранозной форме, соединённых b(1®4)-связями. В составе полимера могут находиться до 200 ксилозных остатков. В соломе и древесине содержание ксиланов достигает 25-28%.

В молекулах ксиланов обычно имеются ответвления в виде ос­татков арабинозы, а также глюкуроновой и галактуроновой кислот. Ответвления чаще всего образуются за счёт этерификации третьего углеродного атома ксилозы. Карбоксильные группы остатков уро­новых кислот образуют эфиры с метиловым спиртом. Ксиланы раз­ных растений отличаются частотой и моносахаридным набором ответвлений в молекуле.

АРАБАНЫ. Это полисахариды клеточной стенки растений, которые состоят из остатков a-L-арабинозы, соединённых глико­зидной связью между первым и пятым углеродными атомами. При этом к каждому второму остатку арабинозы в линейной струк­туре присоединён в виде ответвления еще один остаток арабинозы. В ответвлениях связь образуется между третьим углеродным атомом арабинозы, находящейся в цепочке, и первым углеродным атомом бокового остатка арабинозы.

Как и целлюлоза, гемицеллюлозы не усваиваются организмом человека, но могут усваиваться жвачными животными с помощью ферментов микроорганизмов, находящихся в преджелудках.

ГЛЮКАНЫ. К глюканам относятся полисахариды, образуемые из b-D-глюкозы, но в их молекулах остатки глюкозы соединяются не только b(1®4) -связями, как в целлюлозе, но также и b(1®3)-­связями или только b(1®3)- связями. К таким полисахаридам относятся каллоза и лихенин. Каллоза — полисахарид, включающий до 100 остатков b-D-глюкозы в молекуле, соединённых b(1®3)-­связями. Она содержится в ситовидных трубках флоэмной систе­мы растений. В молекулах лихенина остатки b-D-глюкозы соеди­нены как b(1®4)-связями, так и b(1®3)-связями (встречаются с частотой около 30%). Лихенин входит в состав клеточных сте­нок растений, особенно много его в лишайниках.

Пектиновые вещества. Пектиновые вещества в растениях представлены двумя груп­пами соединений — пектинами и протопектинами, которые раз­личаются строением и физико-химическими свойствами.

Пектины — водорастворимые полисахариды, построенные из остатков α-D-галактуроновой кислоты, которые соединены α(1®4)-связями. Большая часть карбоксильных групп остатков галакту­роновой кислоты связана эфирными связями с остатками метилового спир­та, а к другим карбоксильным группам присоединены катионы кальция или магния. В каждой молекуле пектина содержится более 100 остатков галактуроновой кислоты.

Основная масса пектиновых веществ растений представлена протопектином, который находится в структуре клеточных стенок. Протопектин образуется в результате связывания эфирными связя­ми пектина с галактанами и арабанами, входящими в состав кле­точной стенки растения. Эфирные связи возникают между карбоксильными группами пектина и гидроксильными группами гемицеллюлоз.

Полисахариды протопектина нерастворимы в воде и имеют более высокую молекулярную массу по сравнению с пектинами. Много протопектина накапливается в формирующихся плодах rpуши, яблони, цитрусовых, айвы, что обусловливает их жёсткую консистенцию. При созревании плодов происходит превращение протопектинов в пектины, вследствие чего их консистенция становится мягкой.

Общее содержание пектиновых веществ в плодах и ягодах составляет 0,3-1,5%, в корнеплодах — 1,5-2,5%, клубнях картофеля ­0,1-0,5%, в томатах — 0,1-0,2%, в капусте — 0,3-2,0%, в кожуре апельсина и лимона — 4-7%.

Характерная особенность пектиновых веществ плодов и ягод — способность образо­вывать желе, или студни, в насыщенном растворе сахара (65-70%) и кислой среде (рН 3,1-3,5). Лучшей желирующей способностью обла­дают более высокомолекулярные полисахариды пектиновых веществ.

В стеблях льна пектиновые вещества скрепляют между собой волокна. Для отделения раcтитeльных волокон производится росяная или водяная мочка льносоломы, при которой происходит гидролиз пекти­новых веществ под действием ферментов микроорганизмов.

Камеди и слизи. Это растворимые в воде полисахариды, образующие очень вяз­кие растворы вследствие их набухания.

Растительные камеди выделяются на стволах и ветвях некото­рых деревьев (вишневых, сливовых, миндальных) в виде клейких наплывов при повреждениях. При гидролизе они дают галактозу, маннозу, рамнозу, арабинозу, ксилозу, а также уроновые кислоты.

Слизи, откладываясь между плазмалеммой и клеточной стенкой, способствуют удерживанию воды в клетках и полостях растения, защищают от проникновения инфекции. При их гидро­лизе в основном образуются пентозы (арабиноза и ксилоза), а также небольшое количество галактозы, глюкозы и фруктозы.

Много слизей содержится в семенах льна, клевера, люцерны, ржи и некоторых других растений. Повышенная вязкость ржи при размоле вызвана наличием именно слизей, вследствие чего зерно ржи размалывается значительно труднее, чем пшеница. Содержащиеся в ржаной муке слизи замедляют гидролитические процессы при формировании теста и тем самым улучшают его формо­удерживающую способность.

Камеди и слизи из различных растительных источников существен­но отличаются набором и удельным соотношением образующих их полисахаридов. Они состоят из молекул разной степени полимериза­ции, многие из которых имеют довольно высокую степень ветвления.

Вопросы для повторения.

1. Каковы структурные особенности стереоизомеров моносахари­дов, относящихся к D- или L-ряду? 2. Как образуются циклические формы моносахаридов и в чём состоят различияа— иb-стереоизоме­ров? 3. Как записывается структура пиранозных и фуранозных форм моносахаридов с помощью формул Хеуорса? 4. Какие образуются кон­формации молекул у гексоз и пентоз? 5. Как образуются окисленные и восстановленные производные, а также фосфорнокислые эфиры мо­носахаридов? 6. В чём состоят особенности образования гликозидов, дезокси- и аминопроизводных моносахаридов? 7. Каковы структур­ные и биологические особенности важнейших альдоз и кетоз? 8. Как об­разуются молекулы сахарозы, мальтозы, целлобиозы,b-левулина и других олигосахаридов? 9. Из каких моносахаридов и по какому принципу строятся молекулы важнейших полисахаридов — крахмала, полифруктозидов, целлюлозы и гемицеллюлоз, пектиновых веществ, камедей и слизей? 10. Какие биологические функции выполняют ука­занные выше олигосахариды и полисахариды? 11. Каково содержа­ние сахаров и различных полисахаридов в растительных продуктах? 12. Какие моносахариды и олигосахариды относятся к редуцирующим сахарам? 13. Какое значение имеют углеводы в фор­мировании качества растительных продуктов? 14. Из каких основных компонентов состоит крахмал и каковы строение и свойства этих компонентов? 15. Какие известны разновидности гемицеллюлоз и пектиновых веществ?

Резюме по модульной единице 2.

Углеводы являются важными компонентами клеток живых организмов. Одни из них служат основным дыхательным материалом организмов (сахара, крахмал, по-лифруктозиды) и откладываются в качестве запасных веществ, другие выполняют структурные (целлюлоза, гемицеллюлозы, протопектин) и защитные (камеди и слизи) функции. Большинство сахаров существуют в форме стереоизомеров и относятся, как правило к D-ряду. Гексозы и пентозы существют в организмах преимущественно в виде циклических форм (пиранозных или фуранозных).

Из моносахаридов образуются восстановленные (многоатомные спирты), окисленные (альдоновые, альдаровые и уроновые кислоты) производные, фосфорнокислые эфиры, амино- и дезоксипроизводные, гликозиды, которые являются продуктами превращения моносахаридов и участвуют в метаболизме. Легкоусвояемые формы углеводов (сахара, крахмал, полифруктозиды, пектиновые вещества) способны накапливаться в значительном количестве в растительных продуктах и поэтому определяют их питательную и техническую ценность.

Олигосахариды образуются из моносахаридов, остатки которых соединяются в молекулах олигосахаридов О-гликозидными связями. Сахароза и олигофрукто-зиды откладываются в запасающих органах растений или используются в качестве транспортных форм углеводов в растительных организмах. Мальтоза – продукт распада крахмала, целлобиоза в свободном виде не накапливается, так как используется в синтезе целлюлозы.

Молекулы полисахаридов построены из остатков моносахаридов, которые соединяются, как и в молекулах олигосахаридов, О-гликозидными связями. Молекулы амилозы, полифруктозидов, пектинов, маннанов, галактанов представляют собой цепочечные полимеры. Молекулы амилопектина, ксиланов, арабанов, камедей и слизей имеют ответвления разной степени сложности. Крахмал, полифруктозиды, пектины откладываются в запасающих органах растений. Целлюлоза, гемицеллюлозы, протопектин участвуют в построении клеточных стенок растений.

Модульная единица 3. Липиды.

Цели и задачи изучения модульной единицы. Изучить строение, свойства и биологические функции основных групп липидов. Научить студентов использовать сведения о липидах при оценке качества растительной продукции.

К липидам относятся вещества, различающиеся по химическому составу, строению и выполняемым функциям, но обладающие близкими фифизико-химическими свойствами. Все они содержат гидрофобные радикалы и группировки, вследствие чего не растворяются в воде, но хорошо растворимы в неполярных органических растворителях — эфире, бензине, бензоле, хлороформе.

В зависимости от химического состава и строения липиды под-разделяют на три класса:  простые, сложные и  стероидные.

Простые липиды представляют собой сложные эфиры спиртов и вы-сокомолекулярных карбоновых кислот, к ним относятся жиры и воски. Сложные липиды содержат в составе молекул, кроме спирта глицерина и карбоновых кислот, остатки других соединений: ортофосфорной кислоты, азотистых оснований, моносахаридов и др. Они образуют две группы веществ — фосфолипиды и гликолипиды.

Стероидные липиды — это циклические соединения, являющиеся про-

изводными циклопентанопергидрофенантрена и представленные как сво-

бодными стероидными веществами, так и связанными формами в виде гли-

гликозидов и эфиров. К липидам очень часто относят также растворимые в жирах витамины и пигменты.

Общее содержание структурных липидов в вегетативных частях растений находится в пределах 0,1-0,5%. Накопление запасных липидов в семенах различных растений достигает следующих величин: зерно злаковых и зернобобовых культур — 1-8%, соя и хлопчатник — 20-30%, подсолнечник, арахис, лен, конопля, рапс, горчица, маслины — 20-50%, мак, клещевина, ядра орехов — 50-60%, в зародышах зерновок пшеницы — 8-14%, кукурузы — 30-40%. Растения с высоким содержанием в семенах запасных липидов выделены в особую группу масличных культур. Известны также растения — накопители воска.

— полисахариды — Биохимия

Выделяют гомополисахариды, состоящие из одинаковых остатков моносахаров (крахмал, гликоген, целлюлоза) и гетерополисахариды (гиалуроновая кислота, хондроитинсульфаты), включающие разные моносахара.

Гомополисахариды

Крахмал – гомополимер α-D-глюкозы. Находится в злаках, бобовых, картофеле и некоторых других овощах. Синтезировать крахмал способны почти все растения.

Двумя основными компонентами крахмала являются амилоза (15-20%) и амилопектин (80-85%). Амилоза представляет собой неразветвленную цепь с молекулярной массой от 5 до 500 кДа, в которой остатки глюкозы соединены исключительно α-1,4-гликозидными связями. Амилопектин содержит α-1,4- и α-1,6-гликозидные связи, имеет массу не менее 1 млн Да и является разветвленной молекулой, причем ветвление происходит за счет присоединения небольших глюкозных цепочек к основной цепи посредством α-1,6-гликозидных связей. Каждая ветвь имеет длину 24-30 остатков глюкозы, веточки возникают примерно через 14-16 остатков глюкозы в цепочке.

Общее строение крахмала и гликогена

Гликоген – резервный полисахарид животных, находится в цитоплазме многих типов клеток, но в наибольшей мере в гепатоцитах и миоцитах. Структурно он схож с амилопектином, но, во-первых, длина веточек меньше – 11-18 остатков глюкозы, и во-вторых, он более разветвлен – через каждые 8-10 остатков. За счет этих особенностей гликоген более компактно уложен, что немаловажно для животной клетки.

Целлюлоза состоит из остатков β-глюкозы, единственной связью в ней является β-1,4-гликозидная связь. Она является наиболее распространенным органическим соединением биосферы, около половины всего углерода Земли находится в ее составе. В отличие от предыдущих полисахаридов целлюлоза является внеклеточной молекулой, имеет волокнистую структуру и абсолютно нерастворима в воде. .

Строение целлюлозы

Гетерополисахариды

Большинство гетерополисахаридов характеризуется наличием повторяющихся дисахаридных остатков. Эти дисахариды включают в себя уроновую кислоту и аминосахар. Дублируясь, они образуют олиго- и полисахаридные цепи – гликаны. В биохимии используются синонимы – кислые гетерополисахариды (так как имеют много кислотных групп), гликозаминогликаны (производные глюкозы, содержат аминогруппы).

Гликозаминогликаны входят в состав протеогликанов (мукополисахаридов) – сложных белков, функцией которых является заполнение межклеточного пространства и удержание здесь воды, что обеспечивает тургор тканей и эластичность хрящей, также они выступают как смазочный и структурный компонент суставов, хрящей, кожи. В частности, гиалуроновая кислота находится в стекловидном теле глаза, в синовиальной жидкости, в межклеточном пространстве.

Основными представителями гетерополисахаридов (гликозаминогликанов) являются гиалуроновая кислота, хондроитинсульфаты, кератансульфаты и дерматансульфаты, гепарин.

Строение гиалуроновой и хондроитинсерной кислот

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *